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a b s t r a c t

Adherent biological cells generate traction forces on a substrate that play a central role for migration,
mechanosensing, differentiation, and collective behavior. The established method for quantifying this
cell–substrate interaction is traction force microscopy (TFM). In spite of recent advancements, inference
of the traction forces from measurements remains very sensitive to noise. However, suppression of the
noise reduces the measurement accuracy and the spatial resolution, which makes it crucial to select
an optimal level of noise reduction. Here, we present a fully automated method for noise reduction
and robust, standardized traction-force reconstruction. The method, termed Bayesian Fourier transform
traction cytometry, combines the robustness of Bayesian L2 regularization with the computation speed
of Fourier transform traction cytometry. We validate the performance of the method with synthetic and
real data. The method is made freely available as a software package with a graphical user-interface
for intuitive usage.
Program summary
Program Title: Easy-to-use TFM software
Program Files doi: http://dx.doi.org/10.17632/229bnpp8rb.1
Licensing provisions: GNU General Public License v3.0
Programming language: Matlab version R2010b or higher
Supplementary material: A user manual for the software and a test data set.
Nature of problem: Calculation of the traction forces on the surface of an elastic material from observed
displacements.
Solution method: Traction forces are efficiently calculated by combining L2 regularization in Fourier
space with Bayesian inference of the regularization parameter.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Traction force microscopy (TFM) is a technique for measuring
urface traction forces on an elastic substrate. Due to the unique
ossibilities offered by the technique, TFM enjoys wide popu-
arity among biologists, materials scientists, and experimental
hysicists, see Refs. [1–7] for a non-comprehensive list of recent
eviews. With TFM, one can record ‘‘images’’ and ‘‘movies’’ of
he spatial distribution of traction forces on a surface. Moreover,
FM is essentially an imaging technique and does not require
perturbation of the sample. Therefore, the technique comple-
ents other techniques such as atomic force microscopy, optical
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omputer Physics Communication homepage on ScienceDirect (http://www.
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tweezers, or the surface force apparatus. In materials science
and physics, TFM has been used to measure interfacial forces
during wetting, adhesion, rupture, and friction processes, see,
e.g., Refs. [8–10]. However, the most important application of
TFM is in biology, where it is being employed extensively for
studying the mechanobiology of adherent cells. The traction pat-
terns generated by adherent cells vary typically on a length scale
of about one micrometer. The studied phenomena include cell
migration and adhesion regulation [11–16], three-dimensional
collective cell organization [17–20], and cell migration in wound-
healing assays [21,22], to name just a few. Overall, the length
scales of traction patterns that have been studied with TFM
range from below one micrometer in bacterial adhesion [23,24]
to centimeters in propulsion waves of slugs and snails [25].

A typical TFM setup for studying cell adhesion is sketched
in Fig. 1. Cells are placed on a flat elastic substrate which is
usually synthetic, for example a soft polyacrylamide (PAA) gel,

and contains fluorescent beads as fiducial markers. [26] The live
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Fig. 1. Schematic of traction force microscopy (TFM) to measure cellular traction on flat elastic substrates. Adherent cells deform the substrate and the displacement
field u is obtained by tracking markers within the gel. The traction force field f generated by the cell is calculated by inverting a linear equation system.
ells are imaged together with the fluorescent markers on a mi-
roscope. Surface traction results in local substrate deformations
hat can be monitored by tracking the motion of the beads in
he substrate. The extraction of a discrete displacement field U
escribing the deformation of the substrates is usually done by
omparing images of the fluorescent markers before and after
emoval of the adherent cells. Established methods for calculating
he displacement fields include particle image velocimetry, sin-
le particle tracking, or optical flow tracking [2,3,27]. Here and
n the following, positions on the two-dimensional surface are
escribed in a Cartesian system with coordinates x = (x1, x2).
sing the planar deformations (U1,U2) as input, a spatial map
f traction (F1, F2) on the gel surface can be mathematically
econstructed if out-of-plane forces are assumed to be negligible.
or the reconstruction, the substrate is typically assumed to be
homogeneous, isotropic and linearly elastic half-space. Thus,

he relation between the continuous displacement field Ui(x) and
he traction force field Fj(x′) on the surface of substrates can be
xpressed as [28]

i(x) =

∫
Ω

2∑
j=1

Gij(x − x′)Fj(x′) d2x′, (1)

where Gij(x) is the Green’s function and Ω covers the whole
substrate surface. The traction forces can be calculated in real
space with finite element methods [29,30] or boundary element
methods [26,31]. To calculate the tractions based on Eq. (1) nu-
merically, the integral equation needs to be discretized. In real
space, one can employ linear shape functions [26,31,32] to write
Eq. (1) as a linear matrix equation u = Mf, where the lower
case letters u and f denote the discretized displacements and
tractions. The coefficient matrix M results from integration of
the shape functions. Such real-space methods are very flexible
since they permit the study of various linear material responses
encoded in the Green’s function and spatial constraints are eas-
ily incorporated. However, accurate construction of the matrix
M requires significant computation time on desktop machines.
Alternatively, Eq. (1) can be solved in Fourier space by making
use of the convolution theorem. This approach is called Fourier
transform traction cytometry (FTTC) [12,26]. We employ a spatial
wave vector k = (k1, k2) with absolute value k = |k|. In standard
FTTC, the integral Eq. (1) is written as ũik = {

∑
j G̃ij f̃j}k, where the

tilde denotes the Fourier-transformed quantity. Using a matrix
formulation analogous to the real-space expression, we have
ũ = M̃f̃ with M̃ having a tri-diagonal structure. For conceptual
clarity, in the following we will write the measurement noise
in the recorded displacement explicitly as s in the real-space
domain and as s̃ in Fourier space. This noise can be estimated
in the experiment by quantifying the variance of the measured
displacements in absence of traction. The discretized equations
then read{
u = Mf + s in real space,
ũ = M̃f̃ + s̃ in Fourier space.

(2)

For traction force microscopy, either of these equations is em-
ployed to determine the tractions f. The removal of noise is
critical in most TFM methods. In real-space TFM calculations, the
condition number of M, defined as the ratio of the largest singular
value to the smallest, is almost always much larger than unity,
typically above 105. M is therefore ill-conditioned which im-
plies that small noise produces drastic changes in the calculated
traction forces. For FTTC, spatially varying random noise occurs
mainly at high spatial wave numbers. Hence, noise suppression
can be achieved by suppressing high frequency data. In Ref. [32],
we systematically tested a variety of traction reconstruction ap-
proaches based on Eq. (2). The standard approach for solving the
equation in real space is L2 regularization [2,26,33,34], which
invokes a penalty on the traction magnitude to robustly suppress
the effects of noise. With Fourier space methods, a low-pass
filter is frequently employed to suppress noise in the displace-
ment field before direct inversion of Eq. (2) [12]. Alternatively,
Fourier-space traction reconstruction can also be combined with
L2 regularization, which conveys additional robustness [3,26,27,
35].

Virtually all standard methods for traction calculation require
the implicit or explicit choice of a parameter that suppresses
noise and leaves as much of the true signal conserved as pos-
sible. Within a Bayesian framework, this parameter choice can
be rationalized by relating filter- or regularization parameters
to prior distributions that represent prior knowledge about the
data. Maximizing the likelihood of the prior distributions yields
the corresponding optimal trade-off between noise suppression
and faithful data reconstruction. Bayesian regularization has been
used for example in astrophysics [36,37] and mechanical struc-
ture monitoring [38]. For inference of internal stress in a cell
monolayer, an iterative maximum a posteriori estimation has
been employed [39]. TFM with Bayesian L2 regularization (BL2)
was introduced in Ref. [32] and is based on an established frame-
work of Bayesian fitting [40]. Bayesian L2 regularization was first
employed for real-space TFM methods since this variant allows
comparison of a broad variety of approaches. For practical appli-
cations, however, calculations in Fourier domain have significant
advantages in terms of robustness and speed. In this work, we
present the corresponding method that we term Bayesian Fourier
transform traction cytometry (BFTTC). We compare BFTTC with
other methods such as classical L2 regularization, Bayesian L2
regularization in real-space (BL2), and regularized Fourier trans-
form traction cytometry (FTTC). We find that BTTC is a compu-
tationally fast method that provides robust traction calculations
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without requiring manual adjustment of the noise-suppression
level. We also provide a Matlab software package for BFTTC that is
freely available for download. This software package is intended
to provide a simple and robust solution for data analysis in
the hands of experimentalists. A graphical user interface allows
intuitive use of the program and little theoretical background
knowledge is required.

2. Methods and implementation

2.1. Traction–displacement model

Assuming that the substrate is a semi-infinite half-space, the
Green’s function in Eq. (1) is given by the standard expression

Gij(x) =
(1 + ν)

πE

[
(1 − ν)

δij

r
+ ν

xixj
r3

]
, (3)

where E and ν represent the Young modulus and Poisson ratio,
respectively. Here, r = |x| and δij is the Kronecker delta function.
Denoting the wave vector by k = (k1, k2) with absolute value
k = |k|, the Fourier-transformed Green’s function is given by

G̃ijk =
2(1 + ν)

E

[
δij

k
−

νkikj
k3

]
. (4)

The continuous traction and displacement fields are discretized
by rectangular meshes where n and m are the number of dis-
cretization nodes for tractions and displacements respectively. In
the discretized equations (2), the size of the displacement vector
u is 2m × 1 and size of the traction vector f is 2n × 1 where the
two vector components of the planar fields are concatenated. For
the Fourier space methods, the displacement and traction fields
are discretized with the same grid and we then have m = n.

2.2. Regularization

The classical approach to solve Eq. (2) is L2 regularization,
which is also called Tikhonov regularization or ridge regression.
L2 regularization is a robust procedure that suppresses noise and
produces a smoothed traction field [32]. Here, the residual ∥u −

f∥2
2 = (Mf−u)T(Mf−u) is minimized together with the solution

orm λ2∥f∥2
2 = λ2fTf. The factor λ2 is called regularization

parameter. The reconstructed traction f̂ satisfies

f̂ = argmin
f

[
∥Mf − u∥

2
2 + λ2∥f∥2

2

]
. (5)

This approach can be employed for real-space TFM and in Fourier
space, where the square norms can be calculated conveniently
with Parseval’s theorem. The proper choice of the regularization
parameter λ2 is critical in case accurate traction calculations
re required. A popular heuristic for choosing the regularization
arameter is based on a double-logarithmic plot of the solution
esidual vs. the traction norm for varying λ2. Often, the plotted
ine resembles an ‘‘L’’ shape and the regularization parameter is
hosen to lie in the corner of this curve, thus providing a trade-
ff between faithful reconstruction and smoothing [41]. However,
his ‘‘L-curve criterion’’ is often of little use, in particular when
he corner is either absent or cannot be localized precisely on
he double-logarithmic scale. Moreover, it has also been shown
hat the L-curve criterion can fail systematically [42,43]. There-
ore, the L-curve criterion is often complemented with other
ethods for finding the regularization parameter, such as cross-
alidation [32]. In any case, a manual parameter variation is
andatory to check the validity of the solution.
2.3. Bayesian Fourier transform traction cytometry

Bayesian methods can be used to regularize data in a system-
atic and automated way. Our approach is based on an established
iterative inference procedure [40]. In the first step, a model is
fitted to the data. In the second step, the evidence for the chosen
model is calculated. Traction computations with Bayesian L2 reg-
ularization (BL2) were first introduced as a real-space approach
in Ref. [32]. Here we describe the adaptation of this method to
Fourier-space traction calculation. It is assumed that the noise s
n Eq. (2) has a Gaussian distribution with vanishing mean and a
ariance of 1/β . Therefore, given a traction vector f, the likelihood
f measuring a particular 2m × 1 displacement vector u is

p(u|f, β) =
exp[−βEu]

Zu
=

exp[−β(Mf − u)T(Mf − u)/2]
Zu

, (6)

where Zu = (2π/β)m. As a prior distribution for the 2n × 1
vector of traction forces f we choose a Gaussian distribution with
variance 1/α as

p(f|α) =
exp[−αEf]

Zf
=

exp[−αfTf/2]
Zf

, (7)

where Zf = (2π/α)n. According to Bayes’ rule, the posterior
distribution of f is given by

p(f|u, α, β) =
p(u|f, β)p(f|α)

p(u|α, β)
=

exp[−K (f)]
p(u|α, β)ZuZf

, (8)

where K (f) = βEu+αEf and p(u|α, β) =
∫
d2nf exp[−K (f)]/(ZuZf).

To find the traction vector with the highest posterior probability,
we maximize p(f|u, α, β) with respect to f. The calculation yields
fMP = argmin

f

[
β∥Mf − u∥

2
2/2 + α∥f∥2

2/2
]
, which is equivalent to

our formula for L2 regularization, Eq. (5), when λ2 = α/β [3].
Next, the values of the hyperparameters α and β have to

be determined. In principle, both values can be found by max-
imizing the evidence p(α, β|u) that depends on the measured
displacements u. However, the noise variance 1/β can also be
estimated directly from the measurement uncertainty. Thereby,
the maximization of p(α, β|u) can be reduced to a robust one-
dimensional search for the optimal value of α. Bayes’ law yields
p(α, β|u) = p(u|α, β)p(α, β)/p(u). We next assume a uniform
prior p(α, β) ≃ const. and note that p(u) does not play a role for
the optimization. Thus, we only need to maximize p(u|α, β) ∼∫
d2nf exp[−K (f)] with respect to α. The integral can be ana-

lytically calculated by completing the square. On defining A =

I + βMTM one finds

(u|α, β) =

∫
d2nf exp[−K (f)]

ZuZf
=

(2π )n(detA)−1/2

ZuZf
exp[−K(fMP)].

(9)

Since fMP and A both depend on α, the maximization of Eq. (9)
with respect to α needs to be done iteratively. This iteration
can be sped up by performing the calculations in Fourier space.
For notational clarity, we will write Fourier-space variables and
derived quantities with a tilde. The Fourier-transformation of fMP

yields f̃MP = (M̃†M̃+α/βI)−1M̃†ũ [26], where the complex trans-
pose is indicated by a †. Parseval’s theorem allows convenient
expression of Eq. (9) through Fourier-space variables. We have
Ẽu = (M̃f̃ − ũ)†(M̃f̃ − ũ)/(2m), Ẽf = f̃† f̃/(2n), and Ã = αI/n +

βM̃†M̃/m. Using these expressions, the logarithm of the evidence,
cf. Eq. (9), can be written as

log p(ũ|α, β) = −βẼu(f̃MP) − αẼf(f̃MP) −
1
2
log(det Ã)

+ n logα + m logβ − m log(2π ). (10)
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Fig. 2. Validation of the Bayesian method for regularization parameter choice. (a, i) Traction force vectors, discretized on a quadratic mesh, are randomly chosen
from a Gaussian distribution with fixed variance σ 2

f . Space bar: 100 Pix = 10 grid spacings on a 50 × 50 mesh. (a, ii) Using the prescribed traction as input, a
displacement field is calculated and Gaussian noise with a variance σ 2

noise is added. (a-iii) The regularization parameter is determined by localizing the maximum
in the log evidence curve and traction forces are subsequently calculated. (b) Histogram of the tractions for the sample shown in (a). In the limit of weak noise,
the histogram of the reconstructed traction matches the true traction distribution. (c) Relative difference between the standard deviation of the measured traction
distribution σ BFTTC

f and the width of true traction distribution σ true
f . The grid mesh sizes are denoted by dx. σ 2

u is the variance of the synthetic displacement data prior
to corruption with noise. Increasing the noise level produces a measured (posterior) traction distribution that no longer agrees with the true traction distribution.
(d) Mean error of the reconstructed traction as a function of the relative measurement uncertainty σnoise/σu . The Bayesian estimate for the regularization parameter
λ̂2 and the optimal regularization parameter α/β produce comparable errors for all noise levels.
o
b

i
t
o
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This expression is evaluated numerically. The calculation of
log(det Ã) is done by a Cholesky decomposition of the positive
matrix Ã = LLT as log(det(LLT)) = 2 logΠiLii = 2Σi log(Lii) [32].
To determine the value of α = α̂ that maximizes log p(ũ|α, β)
we employ a golden-section search. Finally, the L2 regularization
parameter follows as λ̂2 = α̂/β .

The calculation of the parameter value λ̂2 requires a well-
defined maximum of the logarithmic evidence as a function of
α. To assess whether this maximum exists, we investigate the
condition d

dα log p(ũ|α, β) = 0. For evaluation of the derivatives of
Ẽu(f̃MP) and Ẽf(f̃MP) we use that n = m and that M̃ commutes with
(M̃†M̃ + α/βI)−1 since the Fourier-transformed Green’s function
is a real, symmetric matrix. A straightforward calculation yields
d
dα Ẽu(f̃MP) = −λ d

dα Ẽf(f̃MP). Therefore, the condition determining
he maximum becomes 0 =

d
dα log p(ũ|α, β) = −Ẽf(f̃MP) −

1
2nTr[Ã

−1
] +

n
α
. We next perform a symbolic eigenvalue decom-

position of M̃ and denote the eigenvalues by {mi}, the matrix
of eigenvectors by VT , and define ûi = Vijũj. The condition
determining the maximum of the logarithmic evidence then reads

1
2n

2n∑
i=1

βû†
i ûi m2

i

(m2
i + λ2)2

=
1
2

2n∑
i=1

m2
i

λ2(m2
i + λ2)

. (11)

olutions exist if the functions of λ2 on the left hand side and on
he right hand side of Eq. (11) cross each other. Both functions
ecrease monotonously with λ2. However, for λ2 → 0 the left
and side remains finite while the right hand side diverges.
hus, Eq. (11) has a real solution if the left hand side becomes
igger than the right hand side for any λ ≥ 0. In the limit
2
f λ2 → ∞, the condition for the occurence of a maxium
ecomes 1

n

∑2n
i=1 βû†

i ûi m2
i /

(∑2n
j=1 m

2
j

)
≥ 1. For the TFM data,

we find that the values of û†
i ûi roughly decrease with decreas-

ng squared eigenvalues m2
i since the displacement magnitudes

ypically decrease with higher Fourier modes, as do the entries
f M̃. Assuming that the approximate ordering of m2

i and û†
i ûi

olds strictly, we can invoke Chebyshev’s sum inequality to
btain 1

n

∑2n
i=1 βû†

i ûi m2
i /

(∑2n
j=1 m

2
j

)
≥

1
n2

∑n
i=1 βû†

i ûi. Since for
all reasonable TFM datasets the mean squared displacement is
larger than the noise variance, we expect that 1

n2
∑n

i=1 βû†
i ûi =

2β
n

∑n
i=1 u

2
i > 1. Therefore, the condition for the occurrence of a

aximum in log p(ũ|α, β) should be fulfilled for some λ2 > 0. The
resulting maximum is unique. In summary, a semi-quantitative
argument supports the existence of a maximum of the logarith-
mic evidence log p(ũ|α, β) when appropriate TFM data is used. In
our tests, a unique maximum was found for all datasets.

2.4. Generation of synthetic test data

To confirm that the Bayesian approach yields a correct esti-
mate for the regularization parameter we employ synthetic data
sets with known properties. In our first test series, we generate
random traction fields by drawing individual traction vectors
from Gaussian distributions with fixed variances, as illustrated in
Fig. 2(a-i) and (a-ii). The traction field is produced on a 50 × 50
grid with a Young modulus of E = 10 kPa and a Poisson ratio of
ν = 0.3. For example, we employ a Gaussian traction distribution
with a variance of 104 Pa2 and therefore α = 10−4 Pa−2. After
calculation of the displacements from the traction, Gaussian noise
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Fig. 3. Reconstruction quality of BFTTC compared to other regularization methods. (a) Synthetic traction force pattern that is used for testing the reconstruction.
Space bar: 5 µm. (b) Tabulated overview of the compared traction reconstruction methods. (c) Classical traction reconstruction in real space with L2 regularization.
The L-curve shows a slight ‘‘corner’’, which is used to determine the value of the regularization parameter. Note that calculations in real space are done with
standardized data [32], which renders the regularization parameter dimensionless. (d) Bayesian L2 regularization (BL2) in real space determines the regularization
parameter value automatically. The automatically determined regularization parameter is close to the one predicted in (c) from the L-curve. (e) Classical, regularized
Fourier transform traction cytometry (FTTC). The L-curve does not show a ‘‘corner’’, which makes it difficult to determine an appropriate regularization parameter.
(f) Bayesian Fourier transform traction cytometry (BFTTC) determines an optimal regularization parameter automatically. (f) Comparison of the reconstruction quality
measures in 8 synthetic data sets; error bars are the standard deviations of the samples. The reconstruction accuracy of all four methods is found to be similar.
2
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with a variance of 10−4 Pix2 is added, thus β = 104 Pix−2.
In the second test series, we construct synthetic data to study
the reconstruction quality for localized traction patterns. As in
previous work [26,32], we assume that the traction is localized
in circular spots, each having a constant traction magnitude.
For every individual spot, the step-like traction profile can be
integrated analytically to produce a displacement field. Due to
the linearity of the problem, displacements from different spots
can be added to produce the final result. Explicit formulas for
the displacement field are provided in the supplementary of
Ref. [32]. For generation of this data, we fix the Young modulus
E = 10 kPa and the Poisson ratio ν = 0.3. The traction patterns
consist of 10–20 circular traction spots, as illustrated in Fig. 3(a).
The diameter of the spots is 2µm and the mesh size of the
reconstructed traction is 0.5µm. The traction force magnitude in
he spots is randomly chosen in the range [0 − 700] Pa and the
um of the x- and y components of the traction forces vanishes. To
imulate the measurement uncertainty, Gaussian noise is added
fter calculation of the displacement field. The noise variance in
he different samples is between 2% and 8% of the maximum
bsolute displacement value.
.5. Reconstruction quality measures

For the synthetic test data with circular spots the traction force
s exactly known. Therefore, we can qualitatively calculate the
econstruction errors. Here, we use four different error measures
ntroduced in our previous work [26,32]. To provide simple def-
nitions of the error measures, we rewrite the 2n × 1 traction
ector f as a n × 2 traction vector with the values t = {tx, ty}

at every grid node. Real traction and reconstructed traction are
denoted by ttrue and trecon, respectively.

• The Deviation of Traction Magnitude at Adhesions (DTMA)
is defined as

DTMA =
1
Ni

∑
i

meanj
(
∥treconj,i ∥2 − ∥ttruej,i ∥2

)
meanj

(
∥ttruej,i ∥2

) , (12)

where Ni is the number of circular traction patches and
the index i runs over all patches. The index j runs over all
traction vectors in one patch. The DTMA lies between −1
and 1 where 0 indicates a perfect average traction recovery
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and a negative or positive value implies underestimation or
overestimation, respectively.

• The Deviation of Traction Magnitude in the Background
(DTMB) is the normalized difference between the recon-
structed and real traction magnitude outside the circular
patches

DTMB =
meank

(
∥treconk ∥2 − ∥ttruek ∥2

)
1
Ni

∑
i meanj

(
∥ttruej,i ∥2

) , (13)

where the index k runs over all traction vectors outside the
patches. The DTMB lies in the range [0, 1] and a value close
to 0 indicates low background noise in the reconstructed
traction.

• The Signal to Noise Ratio (SNR) is defined in this context as

SNR =

1
Ni

∑
i meanj(∥treconj,i ∥2)

stdk(treconk )
. (14)

The index k runs over all traction vectors outside the patches
while j is the index of each traction vector in the patch i. The
SNR measures the detectability of a real signal within a noisy
background. Its value ranges from 0 to infinity where a SNR
that is much larger than unity indicates a good separation
between traction and noise.

• The Deviation of the traction Maximum at Adhesions (DMA)
measures how peak values of the traction over- or underes-
timate the true value. The quantity is defined as

DMA =
1
NA

∑
i

[
maxj(∥treconj,i ∥2) − maxj(∥ttruej,i ∥2)

]
maxj(∥ttruej,i ∥2)

, (15)

where the maximum traction vector with index j is cal-
culated for each traction patch separately. A DMA of 0
indicates that the local traction maxima in the reconstruc-
tion and in the original data are equal. Positive or negative
values of the DMA imply that the maximum of traction is
overestimated or underestimated.

2.6. Software for traction force calculation

We provide a Matlab software package containing the pre-
sented Fourier-space methods for calculating traction forces. Note
that the program requires the input of substrate–deformation
data. Usually, the substrate deformations are quantified by mea-
suring the lateral displacements of fluorescent marker beads in a
stressed substrate with respect to the marker positions recorded
in a stress-free state. The standard computational image analysis
method for this task is called particle image velocimetry (PIV) and
various well–established software packages are available [44–46].
Once the displacement data has been extracted, our program can
be used to calculate the traction forces with standard L2 regular-
ization or with Bayesian L2 regularization in Fourier space. The
software is split into a routine for loading data and two routines
for TFM. The routine ‘‘get input data’’ allows the user to select
folders containing the data for the measured displacements, the
noise, and for images. The required data structure in the file
with the displacement data is illustrated in Fig. 5(a). Parameters
of the experimental setup, including the Young modulus and
the Poisson ratio, also need to be provided. Next, the user can
choose between ‘‘Regularization’’ and ‘‘Bayesian regularization’’,
as shown in Fig. 5(b) and (c). Selecting ‘‘Regularization’’ allows
the choice of a regularization parameter, which is then held
fixed for the whole sequence of images that are analyzed in the
data set. For ‘‘Bayesian regularization’’, an optimal regularization
parameter is selected automatically from the data set and the

noise variance. The standard deviation of the noise can either be p
provided as an input or can be determined by manually selecting
an image region that is far away from the cell, as illustrated in
Fig. 5(c). Once selected, the region used for determining the noise
remains the same throughout the whole data set of multiple im-
ages. After pressing ‘‘Analyze sequence’’ the results are calculated
and saved in automatically named files, see Fig. 5(c).

Since the regularization parameter λ2 depends in our frame-
ork on the noise and the traction magnitudes, it should be
dapted if the signal-to-noise level changes significantly. How-
ver, note that a change of the parameter within one image se-
uence is not always necessary, which reduces the computational
ffort and may be advantageous for data postprocessing.

. Results

.1. Validation of the method with synthetic data

To check whether the proposed method actually finds the
orrect regularization parameter, synthetic data sets with ex-
ctly known underlying distributions are required. Therefore, we
reate random traction patterns with traction vectors at each
rid point drawn from a Gaussian distribution. Exemplary data
s shown in Fig. 2(a-i). The calculated displacement field is then
orrupted with a controlled level of noise, see Fig. 2(a-ii). For
he reconstruction, we search for the hyperparameter α that
aximizes the log-evidence function, Eq. (10). As illustrated in
ig. 2(a-iii), log p(u|α, β) has a unique, clear maximum. The regu-

larization parameter determined from the optimization compares
favorably with the true optimal parameter resulting from the
distributions used for simulating the data, here λ̂2 = 9.3 ×

10−9 Pix2/Pa2 ≃ α/β = 10−8 Pix2/Pa2. Visual comparison of the
raction patterns in Fig. 2(a-i, a-iv), as well as a comparison of the
raction distributions in Fig. 2(b), confirms that the Bayesian trac-
ion reconstruction yields correct results. Note that the measured
posterior) traction distribution does not agree with the original
raction distribution when the noise magnitude is large. This fact
esults from the deviation of the posterior probability distribu-
ion, Eq. (8), from the prior probability distribution. In Fig. 2(c),
e illustrate the difference between the measured traction dis-
ribution and the original traction distribution for the synthetic
ata. The relative difference of the traction standard deviations
s plotted against the variance of the noise-free displacement
ield divided by the noise variance, σ 2

u /σ 2
noise. The relative dif-

erence of the standard deviation of the measured posterior and
he original traction distribution scales with the relative noise
ariance. Fig. 2(d) illustrates how the measurement uncertainty
ffects the mean traction error. For the experimentally relevant
egime of measurement uncertainties, 0.01 ≳ σnoise/σu ≳ 0.1, the
elative mean traction error is almost proportional to the relative
easurement uncertainty σnoise/σu. For very low measurement
oise, the mean traction error is dominated by numerical inac-
uracy and aliasing effects. Note that the Bayesian estimate for
he regularization parameters λ̂2 produces errors that are close to
he optimal errors resulting from regularization with the known
arameters α/β for synthetic data.

.2. Quality assessment of traction reconstruction with BFTTC

To quantify the reconstruction quality for localized traction
atterns, we construct synthetic data consisting of circular spots
f constant traction as shown in Fig. 3(a). We employ two classical
ethods where the regularization parameter value is selected
y the L-curve criterion, namely a real space calculation with
2 regularization and regularized Fourier transform traction cy-
ometry (FTTC). The results are compared with the corresponding

arameter-free approaches, namely Bayesian L2 regularization
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Fig. 4. Test of Bayesian Fourier transform traction cytometry (BFTTC) using experimental data. (a, i-ii) Image of an adherent cell and the measured gel displacements.
nly every 7th displacement is shown for better visibility. The cell edge is outlined in white. (b) Results from traction calculation with BFTTC. (b, i) A plot of the
ogarithmic evidence reveals a clear maximum, which serves to determine the regularization parameter. (b, i-ii) Calculated traction forces. (c) Results from traction
alculation with the real-space method BL2 for comparison with BFTTC. While the two methods produce similar results, traction fields calculated with BFTTC are
lightly smoother than the fields calculated with the real-space method due to the different discretizations.
T
C

BL2) in the real-space domain and Bayesian Fourier transform
raction cytometry (BFTTC), see Fig. 3(b). For the real-space TFM
esults shown exemplarily in Fig. 3(c), the L-curve can have a vis-
ble corner. Note that the calculations in real space are done with
tandardized data [32], which renders the regularization param-
ter dimensionless. For the Bayesian real-space approach, illus-
rated in Fig. 3(e), the logarithmic evidence always exhibits a clear
aximum in our experience. The resulting optimal regularization
arameter is usually close to the value from the L-curve criterion.
owever, in the Fourier-space approach, illustrated with the ex-
mple in Fig. 3(d), the L-curve often does not show a clear corner
nd it becomes challenging to select an appropriate regulariza-
ion parameter. This weakness of the Fourier-space approach is
vercome with BFTTC. As illustrated in Fig. 3(f), the logarith-
ic evidence calculated in BFTTC has a pronounced maximum,
hich provides a clear criterion for the automated choice of the
ptimal regularization parameter. To generate statistics on the
erformance of the different methods, we next record the traction
econstruction quality in 8 separate tests with different traction
agnitudes and patterns. The resulting error norms show that
ll four methods offer similar traction reconstruction accuracies,
ee Fig. 3(e)(i-iv). The most noticeable reconstruction errors are
n underestimation of mean traction (negative DTMA) and a pro-
ounced traction background (positive DTMB) [32]. The similarity
n reconstruction accuracy is expected because all methods are
ased on L2 regularization and also make use of the same spatial
rid for discretization. However, the numerical effort required
or the four methods is very different. Table 1 summarizes the
omputation time required for building the coefficient matricesM
r M̃ and for reconstructing the traction forces. While M̃ is rapidly
uilt in Fourier space, the assembly of a large coefficient matrix M
n real space requires can require many hours. Inferring the op-
imal regularization parameter requires additional computation
ime. Overall, real-space methods are not prohibitively slow but
uite impractical for every-day use by experimental scientists.
FTTC, however, requires acceptable computation times ranging
rom seconds to a few minutes.
able 1
omputation time for different methods.
Reconstruction method L2 BL2 FTTC BFTTC

Building of M or M̃ 23.3 h 0.07 s

Traction reconstruction 67.4 s 338.8 s 0.06 s 3.1 s

The employed data set consists of a rectangular grid with 2500
displacement and traction vectors. Benchmark tests were done
on a desktop computer equipped with 16 GB RAM and an Intel
I5-7500 CPU (3.40 GHz).

3.3. Application of BFTTC to experimental data

To provide an application example for BFTTC, we quantified
the traction forces generated by NIH 3T3 fibroblasts and mouse
podocytes on polyacrylamide gel substrates. The experiments
were done precisely as described in Refs. [3,47]. The gel substrates
had a Young’s modulus of E = 32 kPa and a Poisson’s ratio
of roughly ν = 0.48. Fig. 4(a) shows a cell outline and the
measured displacement data. After recording images of the cell
and the nanobeads, the cell was removed from the substrate
to provide a stress-free reference for tracking the motion of
the nanobeads. We estimate the variance of the noise in the
displacement data by quantifying the displacement variance in
a small region that is very far away from the cell and contains
no systematic displacement. Plotting the logarithmic evidence as
a function of α yields a curve with a clearly defined maximum,
see Fig. 4(b–i,c–i), which results in an unambiguous selection
of the regularization parameter. Further tests were performed
where, for visualization of the force-generating structures, the
cell–substrate adhesions were labeled with GFP-paxillin. It was
found that BFTTC produces traction maps with defined foci that
co-localize with the GFP-labeled sites of focal adhesion, see the

example in Fig. 5.
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Fig. 5. Graphical user interface of the provided software for regularized FTTC and BFTTC. (a) The ‘‘get data’’ interface allows users to input data locations and parameters
of experimental setup. The data structure of the input files can handle a whole video sequence or individual traction recordings. (b) If the ‘‘Regularization’’ option is
chosen, a regularization parameter in units of Pix2 must be provided by the user. (c) If the option ‘‘Bayesian regularization’’ is chosen, the regularization parameter
is automatically determined from the measured displacement data and its noise variance. A sample with displacement noise can either be provided with the input
file or it can be determined from a manually selected region that is far away from the cell. A ‘‘Preview’’ button offers the possibility to visually inspect the solution
before one presses ‘‘Analyze sequence’’ to calculate and save the results.
4. Summary

Traction force microscopy is a popular technique for studying
minute forces generated by biological cells, as well as wetting
or frictional forces, on soft substrates. The technique is based
on the measurement of substrate displacements below the spec-
imen, which allows calculation of the traction forces. Usually,
this calculation is done by solving an inverse linear problem
involving elastic Green’s functions. The procedure requires meth-
ods for noise suppression. Dealing with noise appropriately is
an essential issue since the linear system can be ill-conditioned,
which means that the noise can become amplified to an extent
that the true solution is entirely degraded. A simple way to
remove the effects of noise is to filter the displacement field
prior to traction reconstruction. This strategy usually works if the
linear problem is solved in Fourier space because the resulting
linear system is sparse. An alternative strategy for dealing with
noise is regularization, most popular is L2 regularization. With L2
regularization, spatial high-frequency variations in the data are
suppressed, which leads to a robust solution of the inverse prob-
lem of calculating the traction. Regularization is more versatile
than data filtering since it can deal with higher levels of noise,
works both in real-space and Fourier-space approaches, and en-
sures robust reconstruction if non-standard Green’s functions are
employed, for example to take into account three-dimensional
substrate topography and tractions. Regardless of the method,
suppression of noise always reduces the spatial resolution. Op-
timal resolution of the fine details of the traction field can only
be gained if the level of noise suppression is adapted for each
sample. For L2 regularization, this adaptation is done by changing
the regularization parameter, which is usually a manual process
based on heuristics, which introduces a considerable degree of
subjectivity in the resulting traction.

Here, we have introduced a Bayesian method for automatic
inference of the L2 regularization parameter for traction recon-
struction in Fourier space. Using synthetic data of different type,
we demonstrate that Bayesian Fourier transform traction cytom-
etry (BFTTC) is a fast and reliable method. Our tests show that
BFTTC can handle large measurement noise. However, the noise-
and displacement variances ideally satisfy σ 2

noise/σ
2
u ≲ 0.01 for

accurate traction reconstruction. While the quality of traction
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reconstruction with BFTTC is comparable to other methods based
on L2 regularization, the choice of the regularization parameter
is now automated. Heuristics like the L-curve criterion, which is
particularly ambiguous in Fourier space, are no longer required.
The additional computation time required for determining the
optimal regularization parameter in BFTTC is only a few seconds
to minutes for large data sets. In our experience, the logarithmic
evidence always exhibits a maximum that is sufficiently pro-
nounced to yield a regularization parameter estimate. However,
it is important to keep in mind that the algorithm is based on
the assumption of a Gaussian prior distribution that is symmetric
around the origin. Thus, the use of BFTTC is not recommended
if the traction forces in the field of view do not balance each
other. Moreover, if complex, non-Gaussian traction distributions,
e.g., multi-modal distributions, are expected, it may be preferable
to resort to Bayesian methods with prior distributions tailored
to the specific problem in order to maximize the reconstruction
quality.

To provide users from biology, physics, and materials sciences
with an easy-to-use tool to analyze their TFM data, we imple-
mented BFTTC as well as regularized FTTC as a Matlab package.
The package comes with a user-friendly graphical interface, re-
quires minimal knowledge of the algorithmic details, and is freely
available [48].
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