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Abstract

The scope of this mater project is to investigate the macroscopic second grade modeling of a saturated
porous matrix by double scale asymptotic expansion method. Strain localization is modeled by the
second grade modeling which considered the second derivative displacement, and it is obtained from
the virtual power formulation. The homogenization method is used to solve partial differential
equations in the heterogeneous materials with a periodic structure. Each quantity (such as displacement,
force, stress and water pressure) of the model is expanded (double scale) and was put them into partial
differential equations. Then, the mean quantities were obtained a long with the macroscopic second
grade models by the homogenization process. The modeling is equivalent to those without any
boundary condition of solid or interface condition between solid and fluid inside the sample. In this
report we investigated the macroscopic second grade modeling of 1D periodic medium, empty porous
matrix and saturated porous matrix.
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Chapter 1

Introduction

Strain localization is an important phenomenon in geomaterials. However, classical theory of continuous media is

unable to correctly model it. Different methods have been proposed to overcome the inadequacies of the classical

theory of continuoum media. Second grade model considers the second derivative of the displacement field in the

constitutive equation. The method is generally used to produce balance equations by virtual power Germain [6].

Chambon et al. [5] proved the one dimensional second grade model using the aforementioned method. Collin et

al. [4] researched the thick-walled cylinder problem by the second grade modeling which is three dimensional.

An example of the one dimensional second grade model is presented by virtual power and it is similar to the one

Chambon et al. [5]. The case study consists of a bar (0, 1) with zero displacement at L(0) and without gravity

force.

We define N = au’ and M = bu”. The internal virtual power is

1
Yu*, p’(u*)z—/ (Nu™ + Mu™")dx
0

and the external virtual power is

Vu*, p¢(u) = Fou*(0) + Fu*(1) +Mou™ (0) + Myu™ (1)

Using u*(0) = 0, the virtual power formulation is

1
/ (Nu +Mu™")dx = Fiu*(1) + Mou™ (0) + Myu™ (1)
0

Defining 7 = 42, the force is found to be F; = N(1) —T(1), My = —M(0).

X’

Using u*(0) = 0, equation (1.0.3) is writen as

du*/
dx

1 u*
mmmm—/XNZ

0 X

Ydx—T(1)u*(1)=0

1
)M+MUWWU—M®WW®—A(M

(1.0.1)

(1.0.2)

(1.0.3)

(1.0.4)



Using the integrating by parts, we get

= utd
; dxu X+

1 1 *
dN / M A T (1) =0 (1.0.5)
0

Using ©*(0) = 0 and the integrating by parts again, we have

1 1
dN dTr
Yu*, / —u*dx—/ —u'dx=0 (1.0.6)
0 dx 0 dx
Hence, the strong formulation is
i(N—T)—O (1.0.7)
e = .0.
am
T2 1.0.8
I ( )
N =au (1.0.9)
M = by (1.0.10)

with limit conditions F; = N(1) — T (1), Mo = —M(0) and u(0) = 0.

This is the one dimensional second grade model and it is similar for three dimentional. We obtain the three
dimensional second grade balance equation and boundary conditions by the virtual power and they describe the
heterogeneous materials.

There are lots of examples of heterogeneous materials in the context of civil engineering, such as soil mass, rock
mass and concrete etc. Heterogeneous media with a large number of heterogeneities cannot be described by con-
sidering each of the heterogeneities, which would yield to intractable boundary value problems. Generally, we use
behavior of large scale (macroscopic scale) to respect the heterogeneity scale. It means using a simpler equivalent
continuous medium of macroscopic behavior and macroscopic boundary conditions to research heterogeneous

materials.

The homogenization method is one of equivalent methods for periodic structure. Homogenization method is also
called double scale asymptotic expansions for periodic media which all coefficients and geometry are supposed
to be spatially periodic. Sanchez [7] firstly used this material. It is widely used, such as in elasticity media by
Sanchez [8], in filtration by Caillerie [3] and in saturated porous media by Auriault [2]. Heuristically, the method
is based on the consideration of two length scales associated with the macroscopic scale (x) and microscopic scale

= g, with & tend to zero).

The double scale asymptotic expansion method has the following steps Fig. 1.0.1):
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Figure 1.0.1: Method of double scale asymptotic expansions

1. We start with the second grade model of ordinary differential equations (1D problem) or partial differential

equations in the heterogeneous materials with a periodic, that is macroscopic materials with variable x.

2. If a;‘?jmn does not depend on x, the solid is homogeneous. On the other hand, if afjmn depend on x, the solid

is not homogeneous, such as solid consist of two different materials, and we define the constitutive stiffness
afjmn (x) = aijmn(%) = djjmn (y)
3. We look for each physical quantity, such as displacement, force, stress and water pressure (generally denoted

by w®(x)) as double scale expansion form.

x X x
L A S R A O R A SO RS (1.0.11)

The formulation above is the general form. However, some quantities may have power € less than 0. In fact,

equation (1.0.11) indicates that w* is a smooth function y°(x) plus a slightly high oscillating term.

4. We take the quantity of double scale expansion into partial (or ordinary) differential equations of model.

5. We have the different order partial differential equations with the boundary conditions. We can solve every

physical quantity y°.

6. We need to do the volume average of balance equation at £€° with respect to y over the period Q, such as

90y o, ! 90y aT"})dv (1.0.12)
< >—<=Lo=—— L 0.
0x; 0x; Q] Jo, dy; 9y,

Then, we obtain the macroscpic second grade modelling by homogenzation.

This present study focuses on three macroscpic second grade models by the double scale asymptotic expansions
method that are second grade modelling of one dimenional periodic media, empty porous matrix and saturated

porous matrix in following chapters.



Chapter 2

Second grade modelling of one

dimensional periodic medium

In this chapter, we investigate the macroscopic behaviour of second grade of one dimensional periodic medium
by the double scale asymptotic expansion method. This basic problem helps us to understand how to use the

asymptotic expansion approch and gives us a basic idea for empty porous matrix and saturated porous media.

2.1 One dimensional periodic medium description

The one dimensional medium under consideration has a periodic strcuture (Fig. 2.1.1), the period being small.
The period Y is a segment of length L. There are more than one materials of every period and the constitutive law

stiffnesses a® and b® depend on x.

Figure 2.1.1: One dimensional periodic medium

The second grade modelling in this medium is given in the following equations in which gravity is not considered.

%(Nth) —0 2.1.1)
T(x) = ddee 2.12)



ar<

M*(x) = b*(x)—— (2.1.3)

N&(x) = a®(x)E® (2.1.4)
ey =

) =2 (2.1.5)

2.2 Second grade modelling of one dimensional periodic medium

For the implementation of the asymptotic method (€ is supposed to tend to zero), the function b*(x) and a®(x) are
defined by :

o (x) = b(2) = aly) 2.1

b (x) = b(3) = b) 222)

We look for the displacement 1 (x) as double scale expansion,

uE (x) = u(x, g) teul(x, g) + el (x, g) 3 (x, g) T (2.2.3)

The normal force N¥(x) is the first derivative u®(x) and the force M®(x) is the second grade u®(x) . The € power
of first term of force expansion is the same as the first term of the constitutive equation expansion. Hence, we look
for N&(x) and M¥(x)

1
N = N (x, g) +N(x, g) +eNx, g) Foe (2.2.4)

I
ME(x) = —M2(x, %) n EM’l(x, g) +MO(x, g) teM(x, g) T (2.2.5)

with y = x/¢e. u', N' and M" are y-periodic, with period Y.

When substituting the expansions (2.2.3) and (2.2.5) into equations (2.1.5) and (2.1.2), it is convenient to replace
the operator % by % + %% which yields:

0 0 1 1 2 2 3
_Low o oul out oy 0w (2.2.6)

t
E*(x) ax oy ox T a

Sty ox oy



1 oM—2 1 oM oM} 1 oM™' oMm° 8M0+8M‘

1 _ —
o=t " e o T )t t o

2.2.7)

We define T3(x,y) = ag’—;, T 2(x,y) = 31:94;2 + azgy*‘ LT (x,y) = ‘9’5[;1 + 33*/‘/;0 -+ and equation (2.2.7) is written

as

1 1 1
Te(x) = 5T 3()c,y)ﬂLgT 2(x,y)JrgT on,y) + T0%x,y) + -

Using the expansions (2.2.8) and (2.2.4) into the balance equation (2.1.1), we get

19773 1,973 9172
et dy _E( ox * dy )
1 o772 oN' 9T ' 1 9N' 9T°! OIN° OT°
_?( dx  dy + dy )+E( dox  ox +87y_87y)
+(87]VO*87T0+LZVI,LT1)+8(LANI,LT1+LA72,LT2
dx ox dy dy ox ox dy dy

)+...:O

Using the expansions (2.2.6) and (2.2.4) into the constitutive equation (2.1.4), we obtain

1y 0 0 _ Lo ou oul du'  ou?
eN (x,y)+ N (x,y) +eN"(x,y)+--- = 24 2 +a( e + Iy )+ €a( o + Iy

Using the expansions (2.2.5) and (2.2.6) into the constitutive equation (2.1.3) is writen

1 1
?Mﬁz(xay) =+ EMﬁl(xay) +MO(X,y) +eee

1 2%u° n 1[7(2 2%ul n 82u1)+b(82u0 +282u1 N %u?
€27 dyr &V dxdy 02 ox? oxdy = 0y?

)+...

One of periods is Y in inside medium, for example (0, L).

We obtain at the first order a periodicity boundary value problem for u:

ar—3
dy =0
oM~2
_3 _
T (x,y) P
22ud

)+...

(2.2.8)

(2.2.9)

(2.2.10)

(2.2.11)

(2.2.12)

(2.2.13)

(2.2.14)



and the periodicity conditions

The integral in equation (2.2.12) with respect to y is

T73(x7y) =0

where o does not depend on y.

. -2 . . .
Equation algy = @ is integrable with respect to y again

M2 (x,y) = oqy+ B

where f; does not depend on y.

Y is periodic thus M—2(x,0) = M—2(x,L). We get a; = 0 and M—2(x,y) = f3;. Equation %zy“zo

with respect to y

dud A |
— = ——dy+
dy /31/0 b(y) Yy+h

where 71 does not depend on y.

(2.2.15)

(2.2.16)

= % is integrable

(2.2.17)

Due to fact that Y is periodic, we get %"yo(x,O) = %—”yo(x,L). Consequently, we obtain 8 = 0 and M~2(x,y) = 0.

. 0 . .
Equation % = 7 is integrable with respect to y

Mo(xvy) = Y1y+61

where 8, does not depend on y.
Y is periodic thus u°(x,0) = u®(x,L). Then we obtain y; = 0 and %—“VO =0.

Summarizing, we obtain M~ (x,y) = 0 and u® = u°(x).

At the following order, we obtain a periodicity boundary value problem for u!.

T3 N o> _
ox dy
oM ™2 ~ oM=2  oM™!
T7(x,y) R and T *(x,y) = o
%0 9%u!
-1 _

and the periodicity conditions

Using M~2(x,y) = 0 and u® = u°(x), we get that

(2.2.18)

(2.2.19)

(2.2.20)

(2.2.21)



2%u!
dy?

M~ (x,y) = b(y)

and the periodicity conditions

The form is same as first order. Furthermore, we obtain M~ ! (x,y) = 0 and u' = u'(x).

At the following order, we obtain a periodicity boundary value problem for u?.

oT=> oN-! or!
— + — 0
dx dy dy

oM oM™ oM
i B ~1 _
T7"(x,y) = ox + dy and T 0) = dx
0u0 % 922
0 _
M (x,y) = b(y)( o2 Jr23x8yJr dy? )

dud

N~'(x,y) =a(y)7y

and the periodicity conditions

Using M2 (x,y) =0, u® = u®(x), M~ (x,y) = 0 and u' = u'(x), we have that

oT~!
dy =0
oM°
-1 _ oM
T (.X,y)— ay
020 9%2

M) =b0)(55 + 5i7)

and the periodicity conditions
By the same way as the first order, we get 7~! = 0 and M° does not depend on y.

Equation (2.2.31) is written as

MO

+Ty

(2.2.22)

(2.2.23)

(2.2.24)

(2.2.25)

(2.2.26)

(2.2.27)

(2.2.28)

(2.2.29)

(2.2.30)

(2.2.31)



M(x) 9% n %u?
b(y) — ox? = 9y?

Equation (2.2.32) is integrable with respect to y.

Y1 22u0 Y 9242
0 - oy D
e [ s P Vo T e ®

We have %—“yz (x,0) = %—”: (x,L) because Y is periodic and equation (2.2.33) is written as

L 240

L 1 2
Owdy ax

MO (x) =

At the following order, we obtain a periodicity boundary value problem for u>.

N o aw a1t
ox ox dy dy

om! N om°
ox dy

T (x,y) = and  T°(x,y) =

2%u! % %P
oz oy T a7)

M (x,y) = b(y)(
MO Ml
M) =al)( G+ 5)

and the periodicity conditions
Using u' = u'(x), we have

dud
0 _
NO(x.y) = aly) 2

Consider the balance equation at order €°, we obtain the following equations

w0 o ort _
ox ox dy dy

o om'

0 -2
T()ny)— ax + ay

and the periodicity conditions

10

oo
ox dy

(2.2.32)

(2.2.33)

(2.2.34)

(2.2.35)

(2.2.36)

(2.2.37)

(2.2.38)

(2.2.39)

(2.2.40)

(2.2.41)



We average the equation (2.2.40) in periodic Y with respect to y and we obtain

dx dx L08ny08yy_

Using the periodicity of ¥, we have N!(x,0) = N'(x,L) and T'(x,0) = T'(x,L) and we have that

LNy
ox ox

Function N° and T° are continuous functions so we can exchange order of integration and derivation.

IN® 1 [EoN°® 2 Y d<N°>
“ox 7L Oﬁy*ﬁz/o“y)*iax

0 0 . . .
We also have < ‘% >= a%% and equation (2.2.43) is written
d<N' > 9<T1%>

ox ox =0

We average equation (2.2.41) in periodic Y with respect to y and we have

0 oM° 1 [Lom!
<T°(x,y) >=< —— > +—

dx LJy dy dy

Using M (x,0) = M"(x, L) and exchanging ortder of integration and derivation, we get

oM° >_8<MO>

0 _
< T (x) >=< 9 P

We obtain macroscpic second grade modelling of 1D periodic medium by homogenization

d < N°(x) > _d< T%(x) >

ox ox =0

d <M
<T%x) >= <T(x)>
L 220

— >
foL ﬁdy dx?

<M°(x) >=<

ou®

<N(x) >=<a(y) > o

11

(2.2.42)

(2.2.43)

(2.2.44)

(2.2.45)

(2.2.46)

(2.2.47)

(2.2.48)

(2.2.49)

(2.2.50)

(2.2.51)



Chapter 3

Second grade modelling of empty porous

matrix

In this chapter, we investigate the macroscopic behaviour of an empty porous matrix, which will appear as a
basic problem for the saturated case in the next chapter. The present study following Auriault [2] justifies the
macroscopic modelling of empty porous matrix and saturated porous matrix by homogenization without second

grade modelling.

3.1 Empty porous matrix description

We investigate the behavior of a periodic Galilean porous matrix with empty pores (no stress on I') (Fig. 3.1.1).

Figure 3.1.1: Periodic empty porous matrix

12



There are solid @, boundary I" and small period Q. @; jun and b; jm, are constants because there is the solid consist

of only one material. The second modelling of stress o;;(x), second grade stress ;% (x) and displacement u* (x)

of the matrix verify the following equations where gravity is not considered:

in solid ®

Q
o
~
Nl
I
o

8Xj ij 1
Gf}(X) = aijmnxmn(u°)

axE
€ _ ijk
T5(x) = I

ij

dexmn(u)

X5 (X) = bj jkdmn o,

71(8u§1 814,‘3)
2% 9x,  Oxp

€xmn (ug)

on boundary I'
i =0 on T

(65 —T5N; =0 on T

and boundary conditions outside the sample (unspecified here)

3.2 Second grade modelling of empty porous matrix

We look for u®(x) as double scale expansion, of the form:

ut(x) = uo(x’ g) Jrgul(x, z) +82u2(x, g) 4.

and the form of stress 0/;(x) and second grade stress xfjk (x) for the same reason as the 1D periodic media,

1 _ X X X X
O-igj(x) = Eo-ij](x7 E) +O-i0j(x> g) +£Gi1j(x7 g) +£2Gt'2j(x7 E) +e

1 X 1 X by X
€ () _ -2 -1 0 1
Kije(x) = 2 Xijk (x, E) T e ijk (x, E) + Zijie (%, g) + €x (x, E) +o

13

(3.1.1)

(3.1.2)

(3.1.3)

(3.1.4)

(3.1.5)

(3.1.6)

3.1.7)

(3.2.1)

(3.2.2)

(3.2.3)



with y = x/€, and where o', x;;; and u' are y—periodic with period Q.

When substituting the expansions (3.2.1) and (3.2.3) into the equations (3.1.5) and (3.1.3), we have

1
e (Uf) = Eeymn(uo) + exmn(uo) + eym,,(ul) + S(exmn(ul) + eymn(u2)) 4. (3.2.4)

9%yl 1 i O, 1 O +8x,-°jk) L

TE(x) = — — 3.2.5
H (x) el 8yk €2 axk 8yk 8( 8xk 8yk ( )
We define
TE( )—iT’3+iT’2+1T’1+ . (3.2.6)
i\ =3l Tt Tt T o
-3 _ axii'kz -2 ‘9751‘7%2 ‘975;‘13 -1 _ ‘9751‘7‘13 Iy
where 7,;° = 505 1" = G-t o T = 2 5y,
Using the expansion (3.2.6) into the banlance equation (3.1.1), we get
LT 1 OT7 TR 1 9T 90y ITT
et 8y.,- el 8xj 8yj e? 8xj 8yj 8y.,-
+1 do;' oT;' o) LT,.‘} do) JTY do) IT} T 327)
€ 8)61‘ ax]' 8y.,- 8y.,- 8)61‘ axj‘ Byj ayj B -
By using the expansions (3.2.4) and (3.2.2) into the constitutive equation (3.1.2), we have
1G‘l(x )+ o o}
205 (0y)+0ij(x,y) +e0y;(x,y) + -
1
= gaijmneymn(uo) + aijmn(exmn(uo) + eymn(ul )) + Saijmn(exmn (ul ) + €ymn (MZ)) +--- (3.2.8)
Similarly, by using the expanstions (3.2.4) and (3.2.3) into the constitutive equation (3.1.4), we obtain
) 2 () A ey) + er(e) o
£2xijk Y gx,'jk X,¥) + ik X%,y Kijk\ Xy
1 0
= ?bijkhmn(aiyh(eymn(”o)))
1 d d d
~b;; o 0 a 0 9 (. 1
+£ ]khmn(axh (eymn(u”)) + v (exmn(u”)) + v (eymn(u)))
0 d d 0
+bijkhmn(aTCh (exmn(uo)) + Txh(eymn(ul )+ Tyh (exmn(ul )+ Tyh (eymn(uz)))
€yt (2 (1)) + 2 ey (1)) + (e (1)) + (i) - (B29)
ijkhmn axh xmn axh ymn ayh xmn ayh ymn o

14



Using the expanstion (3.2.3) into the equation of boundary condition (3.1.6) on I', we get

1 1 _
T4 e+ - Ao+ Xk + EXee + € X+ =0 (3.2.10)
Using the expanstions (3.2.6) and (3.2.2) into the equation of boundary condition (3.1.7) on I', we have

1, 1, 1, _ _
o3l BNJ_?Eijj+E(Gij] —T;; N+ (03} = THN; + (0l — Tj)Nj+--- =0 (3.2.1D)

The periodic Q is illustrated in Fig. 3.2.1, which is inside the sample. I" and dQg N dQ are boundaries of Qg .
There are six normal unit vectors pointing outwards N' (n') on dQ!*, —N' (—n') on 9Q'~, N? (n?) on 9Q*,
—ﬂ(—nj) on 9Q2~, 1? (n?) on dQ3* and —N3 (—n’) on 9Q3~.

Figure 3.2.1: A periodic Q of the empty porous matrix in the sample

We obtain a lowest order a boundary value problem for u°:

in solid Qg,
oT;>
=0 (3.2.12)
8yj
I
3 ijk
= 2.1
i om (G219
Xiik = bijin (i(e (%)) (3.2.14)
ijk ijkhmn 3yh ymn 2.

15



boundary conditions on I,

Xijk " = 0 on T

T;°N;=0 on T

periodicity conditions on dQs NI,

-3 1 1
XIJk @nk z]’ 7—;/ @N] = Fl on

lz;kz@( ) = —I1};, ij

Ao @ni =TI},

-3 2 _ 2
ijo Tij @Nj*Fi on

LR@(-m) =T, T;3@(-N2) = —F

Xuk @nk H?j, 7"1.]73@Nj3 = F,-3 on

1

Xiji @(—n}) = —TT};

-3 3 3
ijo sz @(_Nj):_F

0
We look for Vm, n, %’;’: =0’ =u’ (x) ). The constitutive equations (3.2.13) and (3.2.14) become

0Qg¢N Q!+

on 9IQsNIQ~

0QsN Q>

on 0QsNIQ*

0Qg¢N 393+

on 9QsNIQ>~

(3.2.15)

(3.2.16)

(3.2.17)

(3.2.18)

(3.2.19)

(3.2.20)

(3.2.21)

(3.2.22)

(3.2.23)

(3.2.24)

We can find balance equantion (3. 2 12) and all boundary conditions which they are satisfied. They are possible to

show the solutions u” = u°(x) , x;;¢ = 0 and 7,7 = 0, in fact, unique.

To understand boundary condtion of 7.

3 onT and on 0QgsNIQ, we need to introduce the weak formulation.

Equation (3.2.12) is multiplied by any V1rtual velocity field v; and then integrated over Q with respect y. After

integrating by parts and using the divergence theorem, we have
—3
VV,’
’ Qg ay J
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——;dV =0

(3.2.25)



d
—/ T V’dv+/ T, Njvids =0
QS 8yj 895

where

/ E;3vaids:/Ti;3NjV,'dS+/ Ti;3va,'dS
Qg r dQsNIQ

we get fr Tifva,'ds = 0 because Ti;SNj =0onT.

/ T Njvids = / (T, @N;) e vids + / (T, @(—Nj)) e vids
dQsNIQ BQwaQ” ’ 89508917
+ / (T;;> @N7) e vids + / (T;;> @(—N7)) e vids
895ﬁ8§22+ QQSQ()QZ*

+ / (T;;> @N3) e vids + / (T, @(—N3)) e vids
395ﬁ393+ 395(73937

Using the periodicity conditions on dQgNJdQ, we get

| TNmds=F - F B - £ =0
dQgNIQ

9
i, / T3 av =0
Qg dy;

(3.2.26)

(3.2.27)

(3.2.28)

(3.2.29)

(3.2.30)

Similarly, to understand boundary condtions of X,;kz on I' and on dQg N JQ, we use the same way for equation

(3.2.13)
ox 2
VE};, UEEdV — / T 3EjdV =0
Qs 9k Qs
/ Z,Jk I U dav +/ Xiik nkE,st /Q Tl.JT3El.*jdV =0
N

XijiE; ds—/x E*dH‘/ Xii nkE ds

/895 ijk r ljk 205090 ijk

Using ;5 2n; = 0 on I and periodicity conditions on dQgN 9L, we have that

/ X”knkE ds =0
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(3.2.31)

(3.2.32)

(3.2.33)

(3.2.34)



JE™
vy [ a5 tav [ 1 Eav =0
QS a)’k Q‘S

At the following order, we obtain a boundary value problem for ' that

in solid Qg,

on boundary T,

X,;kl n =0 on T’

Tl-]TZNj =0 on T’

and the periodicity conditions on dQgNJIQ
Using the results of xl;kz =0,u" =ud (x), and Tl;3 =0, we obtain that

in solid Qg,

J

-1 1

iik — bi' mn ymn

Xijk Jkh v (e} (u))

on boundaryT’,
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(3.2.35)

(3.2.36)

(3.2.37)

(3.2.38)

(3.2.39)

(3.2.40)

(3.241)

(3.2.42)

(3.2.43)

(3.2.44)



X,';kl n,=0 on T

Tl-]TzNj =0 on T’

and the periodicity conditions on dQg N I

We obtain a same form as the first order and we also get solutions ' ;

At the following order, we obtain a boundary value problem for u?:

in solid Qg,

-2 —1 —1
oT;* 9o, OT,
ax]' Byj 8y.,-

ot O Oy
Y Ixx AL

0 d 0 d
Xiojk = bijkhnln(a(exmn(uo)) + Txh(eymnwl )+ Tyh (exmn(ul)) + Tyh(e)’mn(”z)))

Gi;I (x,y) = aijmneymn(uo)

on boundary T,

X?,‘k’lk =0 on T

(o' =T;)N; =0 on T

and the periodicity conditions on dQg N JQ

By using %,;kl =0, 7(,;1{2 =0,u’ =u(x) , u' = u'(x), we obtain
in solid Qg,
oT;; !
— =0
dyj
0
-l i
Yo O
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=u'(x) ,x;kl =0and TU_2 =0.

(3.2.45)

(3.2.46)

(3.2.47)

(3.2.48)

(3.2.49)

(3.2.50)

(3.2.51)

(3.2.52)

(3.2.53)

(3.2.54)



on boundary I,

The unknown # is a linear vectorial function of % (ex(u”)) and we enable to look for u? in form:

The %}, and T;7' can be written:

. OT;
we shall check the equation T‘l' ,
J

Xijk

77!

d d
Hige = Dijhmn (5 (eamn () + 5 = (eym (1))

)(,pjknk =0 on T

T;'N;j=0 on T

and the periodicity conditions on dQg N Q.

d —
= &1 5 (exrs (u”)) + 105 (x)

P dxy

bijkhmn ( aixh (€xmn (’40)) + i (eymn (uz)))

A

bijkhmn(% (exmn(uo)) + aayh (eymn (équ)) aaxq (exrs(uo)))

d mn
(bijkhmn + bijqusqu (eyrs(éh )))

h

0

8xh

_ 8X8k . a(bijkhmn+bijqusaiyq(eym(éhmn))) 5

(exmn (“0 )

)

—1

-1
JT;

Vi Yk

9* (bijkhmn + bijqus 3?7,(1 (eyrs (éhmn)))

ady;

dy;9yk

If the function £/ satisfies the equation,

we obtain

9? (bijkhmrz + bijqus aiyq (eyrs (é hmn)))

9y;9yk

20

Txh(exmn(uo))

d
Txh (exmn (”O))

=0

(3.2.55)

(3.2.56)

(3.2.57)

(3.2.58)

(3.2.59)

(3.2.60)

(3.2.61)

(3.2.62)



—1
or;'
dy;

Using x?ik to check the equation X,'Ojknk’ it is written

a mn a
(Dijitmn + ijigrs Er (ews(E™™))) ™ (exmn ("))

If the function £ satisfies the equation,

d mn
(bijkhmn + bijqus (eyrs(é’h )))nk =0
dyq

we get Z,-Ojk”k =0onT.

we check to the equation Tl.]T]N i and we get

9 (i jitmn + bi jqus%q (eyrs(E"™)) 9

- 0\
ES ox; (€xmn (U ))NJ

é hmn

If the function satisfies the equation,

a(bijkhmn + bijqus%,q (eyrs(éhmn)))

=0
Ik
we get E;INJ =0onT.
Summary, """ is solution of
9? (bijkhmn + bijqus alvq (e_W’S (é hmn))) 0
Y9y a
O (it + bijigrs 7= (eyrs (E™™)))
Jkhmn T Dijkgrs 3y (Eyrs —o on T

Yk

d

(bijkhmn + bijqusg(eyrs(éhmn)))nk =0 on I’
q

U X and 7, ; are possible solutions, in fact, which are unique.

At the following order, we obtain a boundary value problem for u?:

in solid Qg,
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(3.2.63)

(3.2.64)

(3.2.65)

(3.2.66)

(3.2.67)

(3.2.68)

(3.2.69)

(3.2.70)



0
0 X 9 liljk
Yoodn o Iwm

d d
Xiljk = bijklmm(aixh(f/’xmn(’"1 )+ Txh(eymn(”z)) + Tyh (€xmn (“2)) + Tm(eymﬂ(u3)))

Gi(; (x,y) = aijmn(exmn(uo) + eymn(ul))

on boundary T,

Xilj'knk =0 on I

(0 —T))N; =0 on T
and the periodicity conditions on dQg N Q.
Using u! = u'(x), we obtain

Gi(} ()C, y) = Ajjmn€xmn (MO)

Finally, a boundary value problem for u* is obtained at the following order

in solid Qg,

863 8Ti9 do;, JT}

ax]' B an

v Iy

70 _ axiojk axiljk

YT oxe | O

on boundary T,

X[ljknk =0 on T
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(3.2.71)

(3.2.72)

(3.2.73)

(3.2.74)

(3.2.75)

(3.2.76)

(3.2.77)

(3.2.78)

(3.2.79)

(3.2.80)

(3.2.81)



periodicity conditions on dQs N I,

@ =11, (o, —T))@N;=F' on dQsndQ'" (3.2.82)

X @(—m) =T}, (o, —TH@(-N})=-F', on 0QsnaQ'" (3.2.83)
X @n; =IL;, (o, —T))@N;=F’, on 9QsndQ*" (3.2.84)
A @(—np) =1L, (0}, —T))@(-N;)=—F’, on 0QsNoQ>" (3.2.85)
1@ =11, (o, —T)@N; =F°’, on 9QsnQ*" (3.2.86)
A @(—m) =11, (6}, —T))@(-Nj)=—F°, on 0QsNoQ’~ (3.2.87)

Averaging equation (3.2.78) in volume Q with respect to y and using the divergence theorem , we have

da?l oT) dol  OT!
< ax’f > < axlj >:—|Q|*1/ (ay” — ay’f )dv = — | Q \*1/ (0 — T} )N;ds
J J Qg J J Qg
=—|a|! (/F(c,l —Ti})des—i—/aQ ﬂaQ(c}j—T,.}.)des) (3.2.88)
S

Using |. 2050 99(614.1]- — Ti})N ids = 0 by periodicity conditions on dQsNdJQ and using the boundary conditions

(ol — Tl})N, =0onT, we get
sy o
< >—< >=0 (3.2.89)
ax]' ij

do) oT)  d<oj> JI<T)>
< >—-< >= — =0 (3.2.90)
an an 8xj 8xj

We average equation (3.2.79) in volume Q with respect to y and use the divergence theorem , we have
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0 1 0
Xiik _ ik 9 ik -
<TY>=< >4 Q! Rav =< =L > p1a|! 1L nids
ij axk | ‘ Qg ayk (9Xk ‘ | 205 ijk
0
_ axijk -1 1 -1 1
Ixx r 90590

We have| Q | ! f5Qs Xiljk”kds = 0 by periodicity conditions on dQgN JQ and Xiljknk =0onI and. We get

ox° d<x’ >
Xije 7= Hije (3.2.92)

0
<T; >=<
Y 8xk 8xk

We obtain macroscpic second grade modelling of empty porous matrix by homogenization

0 0
8<c[j>_8<Tij>

=0 3.2.93
axj ax] ( )
o<y’ >
70 >= ik 2.94
<dij = o (3.2.94)
< 6} >=< dijmn > €onn (1) (3.2.95)
< x% >=<b;; bi: 9 ghmn K 0 39,96
Xijk = i jkhmn + ijkqrs &yq (eyrs( )) > &Xh (exm,,(u )) (3.2.96)
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Chapter 4

Second grade modelling of saturated

porous matrix

4.1 Saturated porous matrix description

We are investigating the macroscopic behaviour of a saturated porous matrix which contains a filtrating fluid when
the movement is quasi-static: velocities are small and accelerations are negligible. Both solid and fliud parts are
connected. For the sake of simplicity, we adopt the following hypotheses: (1) the material comprising of the
porous matrix is same that was described in chapter 3; (2) the fluid is viscous Newtonian and incompressible; (3)
the viscosity is a constant. The saturated porous matrix is illustrated (Fig. 4.1.1) which consists of solid ®g, fluid

& and interface I'.

Figure 4.1.1: Periodic saturated porous matrix
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The pore scale behaviour is same the empty porous matrix in solid ®g, and is Navier-Stokes equation the fluid
®p. The viscosity coefficient is pe? because it represents a biphasic macroscopic behaviour. In other words, the

fluid can only flow when the viscosity coefficient is small. The pore scale behaviour is as follows:

in solid dyg,
i(ng'-—Ts?):O 4.1.1)
an Y L
G;ij(xat) = aijmnexmn(ug) 4.1.2)
oxE..
€ _ Si jk
TSij(xvt> = Tox (4.1.3)
9 en(uf)
Xsij(x,1) = bijkhmnixg;h 2 (4.1.4)
1,0u, Jut
§) =537+ 415
€amn (15) 2( dx, 8xm) ( )
in fluid @,
dof;
! = 4.1.6
axj' ( )
of;j(x,1) = 2ue’D; — p°l; 4.1.7)
1, 0ve, Ovg;
Df =~ (52 : 4.1.8
Y 2( ax/' 8xl~ ) ( )
and the incompressibility condition
e,
Zri g 4.1.9)
8x,~
on interface I',
Xsijek =0 on T (4.1.10)
(qgij_TSeij)Nj:G;:iij on T (4.1.11)
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Vg = v on T (4.1.12)

and boundary conditions outside the sample (unspecified here)

4.2 Second grade modelling of saturated porous matrix

We look for u§, vi; and p* by the double scale expansion in the form:

u§(x,1) = ud(x, gt) + eul(x, gr) + e2u3(x, g,t) +- (4.2.1)

Ve (x,1) = V9 (x, g,t) +evh(x, gt) +e2vE(x, g,t) +o (4.2.2)
x x x

pE(x,1) = pO(x, E,t) +ep'(x, E,t) +&2p%(x, E,t) + e (4.2.3)

and the form of stress og;;(x), of;;(x) and second grade stress xg; ; (x) for the same reason as the 1D periodic

medium,

X X X
OFij(x,1) :Glgij(xvE:t)+861£ij(x7g:t)+8261%ij(xagvt)+"' (4.2.4)
| X X X by
og;j(x,1) = EGSi}(%EJ)'i‘Ggij(%gﬂ)"’scslij(xag’f)+826525j(x75’f)+"' (4.2.5)
1 5, x I _ x 0 x X
Xsiju(x:1) = gls,'jk(xv EJ) + ExSijl'k<x7 gat) + Xsiji (%; gﬁ + &5 (%, E’t) +o (4.2.6)

with y = x/€ and where ug, viz, 0§;, Ofj» X, and p' are y-periodic, with period Q. Not that we have introduced
a possible time dependence which could be due to fliud volume change.

We analysis the pore scale behaviour by the double scale asymptotic expansions technique. It is same as the empty

porous matrix in solid ®yg.
1
exmn(Ug) = Eeymn(ug) + Cxmn (D) + €ymn (%) + €(€xmn (Us) + ey (U3)) +--- (4.2.7)

B al§ijk _ i8l§]2'k 1

_ _ M Xsiji N 9 Xsiji 41 ( Msijk | gy
8xk el 8yk €2

oxy Ay € dx; Ik

( P 4.2.8)

TSSIJ ()C7 t)
We define
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1o s 1o 1.1 0 1 22
Tsij + g lsij + 5 Tsij +Tsij + €lsij+ & T+

Tg(x,1) = & sij T g

) —2 —1 —1 0 0 |
sk T2 — Nsiji + 9 siji 71— N sijk + 9 Xsiji 70 — 9 Xsijk + s
dy, ° USij T dx dy, * TSij T dx dy, O TSij T dxg

-3 _
where T, ;=

Using the expansions into the banlance equation (4.1.1), it is written

-3 -3 ) -2 -1 ~1
I&Tsij 18Tsl.j 8TSl.j iaTSij 80‘5,.]. 8T5ij

_g Byj _E 8xj 8yj g2 an B 8yj 8yj
—1 -1 0 0 0 0 1 1
1 80‘51»]. 8Tsl.j &GSU B 8Tsl.j N 86&.]. B 8TSI.]. acsl.j B 8T5ij

+£( 3xj 8xj 8yj ayj ( 8-’Cj axj 8yj 8yj

Using the expansions into the constitutive equation (4.1.2) , we obtain

|
go_sl'} (x,,1) +G§)ij(xay>t) +80'Slij(x»y7f) +o
1

= gaijmneymn (ug‘) + Qijmn (exmn(ug) + eymn(”}g)) + €ajjmn (exmn(ué‘) + eymn(uz)) +

Using the expansions into the constitutive equation (4.1.4), the constitutive law becomes

1 _2 1 _ 0
gxsuk(x’%l) + gls,'}k(x%l) + 2511 (e 01 1) - € (0,3 1) 4

1 d
= b jkhmn ( Tyh (eymn (”g) )

£
1 d d d
+ gbijkhmn ( Txh (eymn (“g)) + Tyh (exmn (”g)) + Tyh (eymn (ué)))

o oy, 9 1y, 9 1y, 9 2
+bl.l’<hmn( E (exmn(ug)) + E (eymn(ug)) + Oy (exmn(us)) + v (eymn(us)))

9 iy, 9 2y 9 2y, 9 3
el ComU)+ o eom18)+ 5 (exmn(1) + (1)) +

. . . . . €. NG
In fluid ®F, using the expansions (4.2.2) into the equations %ZF L and % we have
J i

IV _la"%l’ Ivp; a"}w+g(a"}w ‘9"12?5)
8xj € 8yj (9xj 8yj 8xj ayj

€ 0 0 1 1 2
avFj_l8vFj IVE; (9VFJ-+8 Vg Ov;

8xl~ 78 ay,' + 8x,~ + 8y,~ 8x,~ 8y,~ )+
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)+...:0

(4.2.9)

(4.2.10)

4.2.11)

(4.2.12)

(4.2.13)

(4.2.14)



Hence, equation (4.1.8) is written

e 11

g a"(1)’1‘ 1 vy 3v(}j IVE; a"ll”j
i g2 o, T

(8yj dy; 2 dx;  dx;  dy; 9y )

Using the expansions (4.2.15) and (4.2.3) into equation (4.1.7), we obtain

Ggij = 2I~L€2ij —piLij=
vy, " aVOFj
dy; 9y

_07.. S 2 i
p Il]+8(”( ) P Il./)+£ ([J( axj + (9)(?, +

(4.2.15)

1.
L) —p?lj)+--+ (4.2.16)

Using the expansion (4.2.4) into eaquation (4.2.16), it is as a constitutive law for the fluid and it is written

0 1 2 2
OF;j+ €CF;;+ € Op; + -+

avo. 8\/2 avo. 8\/2 avl. aV};
0 Fi J 1 2 Fi J Fi J
= —plj+te —plj)+e
Pt (”(9yj+ oy ) TP (u(ﬁijr vy o
Using the expansion (4.2.4) into the balance equation (4.1.6) , we have

1862”. N 86F°ij 8G}U ao;,.j 86§U 0

E 19yj 8xj (Qyj ) ( &xj ayj )

Using the expansion (4.2.2) into the incompressibility condition equation (4.1.9) , we get

lav(}i ovg; OV (avilfi ‘9"12%‘)
€ dy ox; dyi ox; dyi

+...=0

On the interface I', using the expansion (4.2.6) into equation (4.1.10), we have

| |
?XSijzknk + Exsu!k”k + XS+ EXSi kA =0

On the interface I, using the expantions (4.2.9) and (4.2.5) into equation (4.1.11), we get

| | | P 0 0 |
_ETSij Nj— ?TSU Nj+ E(GSij —Tg;; )Nj +(05i; — Tsij)N; + €(0g;; —

— 0 1

)= P*Lj) + - (4.2.17)

(4.2.18)

(4.2.19)

(4.2.20)

N+
4.2.21)

On the interface I', using the expantions (4.2.1) and (4.2.2) into equation (4.1.12), we obtain
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ou’, dul. du
9;+88;+§a;+~:w%+wg+§gﬁm. (4.2.22)

The periodic Q is presented in Fig. 4.2.1 inside the sample. I' and dQg N JQ are boundaries of Qg and T’
and dQr N IQ are boundaries of Qr. There are six normal unit vectors pointing outwards N' (n') on 9Q!,
N (al) on 091, N2 (12) on 992, —N2 (—n) on 902, N () on 9%+ and —N* (—n) on 90

Figure 4.2.1: A periodic Q of the saturated porous matrix in the sample

We obtain at the lowest order a interface value problem for ug:

in solid Qg,
or;?
=L =0 (4.2.23)
ox
-3 Sijk
TSij = &y: (4.2.24)
- d
Xsije = bijkhmn(ym(eymn(ug))) (4.2.25)
interface condition on I',
Xsjw=0  on T (4.2.26)
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-3
TSiij:O on T’

and the periodicity conditions on dQg N I

(4.2.27)

The form is the same as in the empty porous medium. We get the solutions “(s) = ug (x,1), %ijz'k =0and Tsj; =0.

At the following order, we solve similar equations for ué which are now written:

in solid Qg,

-2
ITg;

=0
8yj

—1
L O sije

S oy,

d

-1 1
X i *b"kh €ymn\U
Sijk tjkhmn a)’h( y ( S))

on interface I,
-1
Xsijktk = 0 on I

-2
TSl-ijzo on T

and the periodicity conditions on dQg M Q.

(4.2.28)

(4.2.29)

(4.2.30)

4.2.31)

(4.2.32)

The form is the same as in the empty porous medium. We obtain solutions ué = ué (x,1), )@}k =0and Tsjjz =0.

At the following order, we obtain the interface value problem for u%:

in solid Qg,
—1
dTy; i o
dy;
0
St AL

d d
Xgijk = bijkhmn(aixh(exmn(”g)) + Tyh(eymn(“%)))
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(4.2.33)

(4.2.34)

(4.2.35)



on interface I,

X9k =0 on T (4.2.36)

TgiN;j=0 on T (4.2.37)

and the periodicity conditions on dQg N I

The form is the same as in the empty porous medium and we also get the same solutions ug, Xgi i and Tsjjl as in

the empty porous mudia.

At the following order, we obtain the interface value problem for u} and p°:

in solid Qg,
—1 —1
80'&.1. - 8TSij N (9ng B 8TS(3.j o 4238)
8xj ax.]' 3)’;‘ (9yj o

G.S(‘)ij (X7Y) = aijmn(exmn(ug') + eymn(”}g)) (4.2.39)

in fluid QF,

2o
Bi—o (4.2.40)
8yj
opij = —pL; (4.2.41)
on interface I,

A9 =0 on T (4.2.42)
(05— T5i;)N; = 624N, on T (4.2.43)

and the periodicity conditions on dQg N JQ
and the periodicity conditions on dQr N JQ

Using u} = ul(x,t), we have
G%.j(x7Y) = aijmnexmn(ug> (4.2.44)
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and we obtain

P’ = p°(x,1) (4.2.45)

In fluid QF, we have the following order yields a interface value problem for v. Here, we prove the Darcy law
and this work had done by Auriault (1983)[1].

862-' &O'Fl-»
2 tj

=0 4.2.46
dxj 9y, (3240
avo . aV% :
G}U = u( 8in Wil) —p'L; (4.2.47)
.
VFi _ (4.2.48)
dyi
oul,
W, = % on T (4.2.49)
- - om0 — 0 9u; L e0 1,900 | 90)
By using the relative velocity @;’ = vg; — —;* and defining €;; = 5( 7 + T}’i)’ we have
0 1
90rij | IOrij _ 0 (4.2.50)
x; dy; o
Op;j = 2UEy; — p'l;j (4.2.51)
dw?
L (4.2.52)
9yi
o’ =0 on T (4.2.53)

The problem is unknown a)l.o and p1 and known pl with linear equations (4.2.50) and (4.2.53). Thus, we enable to
look for p! the following form

(x,1) (4.2.54)

. . . . 0
and a)l-o is a linear vectorial function %
J
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and function k;; is solution of:

akij 0
9y
And the function k;; satisfies the equation
kl‘j =0 on T’

a)lp , p1 are the solutions, in fact, unique.

The mean of equation (4.2.55) yields the Darcy law:

0 0
dug; dug;

<a),-°>:|Q|*‘/ v(}idV—\Qr‘/ Ey AV =<Vl > —¢ - =
o Qg

Finally, we obtain the intertace value problem for u}:
in solid Qg,

0 0 1 I
dag; B ITg; N dog;; B IT; _

19xj an 8yj 8yj 0

0 1
9 Xsi n 9 Xsi jk

79 —
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in fluid Qf,

0 |
IOri; IOk 0

8xj 8yj
0

— (U
Opij = —p 1ij

on interface I,

1
Xsijek =0 on I

| 1 _ 1
(GSij_TSij)Nj_GFiij on T’
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| Q]

/ kijdV
QF

op°

8xj

(4.2.55)

(4.2.56)

(4.2.57)

(4.2.58)

(4.2.59)

(4.2.60)

4.2.61)

(4.2.62)

(4.2.63)

(4.2.64)



periodicity conditions on dQs N I,

1 1_ ml
Asi jk@nk = HSij’

1 313
Xsije@n = 15,

lslijk@(_”i) = _H.3Sijﬂ

periodicity conditions on dQF N JQ,

G}ij @(

0QsNaQ!T

on 9IQsNIQ~

0QsN Q>

on 9IQsNIQ*~

dQsN o3t

on 9IQsNIQ>~

(0g;j — Ts;;)@N} =Fy;, on
(Gslij - TSlij)@(_N}) = _Fsln
(Gslij - Tslij)@sz» = FSZi, on
(Gslij - TSlij)@(_sz) = _FS21'7
(Gsll-j - TSIij)@N;» =F3, on
(Gslij - TSlij)@(_N;) = _Fs3i7
04;j@N} =Fp;, on 9dQpnaQ'"
—N}) =—Fk, on 0QrnaQ'”
0;j@N; =Ff, on 0QpnaQ*"
0QF NIQ*~

1 2 2
OF;j@(—Nj) = —Fp;, on

04;j@N; =Fp;, on 9QpnaQ’"

ok @(~N) = ~Fjy, on 3QrNaQ>

(4.2.65)

(4.2.66)

(4.2.67)

(4.2.68)

(4.2.69)

(4.2.70)

(4.2.71)

(4.2.72)

(4.2.73)

(4.2.74)

(4.2.75)

(4.2.76)

In solid g, by averaging the balance equation (4.2.59) in volume Q with respect to y and using the divergence

theorem, we have
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0 0 1 1
<aGSij> <8TSij >:_|Q|71/ (aGSij_8TSij
Qg

(9)Cj 8xj

av=—|Q *1/ od —Td)Nids
8)’]‘ 8)’]‘ ) | ‘ 395( Sij SU) J

= _|Qr1/ (cS‘,.j—TS‘,.j)N,-ds—\Qr‘/(oslij—TS‘,.j)des 4.2.77)
9QsNIQ r

Using periodicity conditions on dQg N JQ, we get

dold;, T,
] Sij o _ -1 1 1 \a7.
< ax; o >=—-1Q| /F(GSij—Tsij)deS (4.2.78)

By averaging the balance equation (4.2.60) in volume Q with respect to y and using the divergence theorem, we

have

0 1 0
Xsijk _1 9 Xsiji 9 Xsiji ~1 1
<TY >=< 225 40 Radv =< 222 5 4| Q nid
Sij dxi el Qs Ik dxy el Qg Xsijies
oy .
_ o P >+ Q! / Xsipnwds+ | Q|7 / Asi juids (4.2.79)
Ixy 9Q5n9Q r

By using the same periodic conditions on dQg N JdQ and x;i e = O onTI and . We obtain

xS, ik

0 —

(4.2.80)

In fluid QF, by averaging the balance equation (4.2.61) in volume Q with respect to y and using the divergence

theorem, we get

002 . Jol. .
< 2OFij S= Q]! Jdvz_uzrl/ G}iijds
Jx; or 9Yj o0r
:_|Qr1/ op;iNids— | Q|7 /G}iijds (4.2.81)
0QFNIQ r

Using the same periodic conditions on dQp N JQ, we obtain

0

acyFij _ -1 1
8xj r X

(4.2.78)+(4.2.82) and using the interface condition equation (4.2.64), we obtain
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Let us define the total stress o© as

0 .
0 Og;; in Qg
ij =
0 .
Opij in Qp

Using the total stress and exchanging order of integration and derivative, we get

0 0
8<Gij>78<TSij> B
8x/- 8xj

where
~1 ~1
<o) >=|Q| / og;dV+| Q| / 07:jdV =< aijmn > xm(U3) — 9 p°L;
Qg ’ Qp
A second compatibility condition is obtained from the fliud volume balance at order £°

0 1
vy OV

Jx; dyi =0

(4.2.83)

(4.2.84)

(4.2.85)

(4.2.86)

(4.2.87)

By integrating over Q with respect to y, and using the divergence theorem and the periodicity of v!, we have

Y, Vi,
< OVFi >:f|Q|_1/ VF’dv:f\Q\_l/ vL.Nids
9x; or 9Yi FIo

= — | Q ‘_1 / V}'l‘Nl‘dsf | Q |_1 /Vll:'lNldS: — | Q |_1 /VII;‘lNldS
!9QFQ9Q r r

By using the displacement continuity condition on I" and ué = ué (x,1), we get

avg- dul. dul.
Es=— Q| [ viNids = — Q*‘/ SEN;ds = — =0 Q,*I/N-d
<Ghs=—laf! [hnds=— ol [ Foinas == @) [ Nas

We look for A; is a constant.

dA;

dyi =0

dA;
ldVZ/ AiNids:/ A,'Nids—i—/Ai]Vids:Ai/]Vids
Qp dyi IQF IQrNIQ r r
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(4.2.88)

(4.2.89)

(4.2.90)

(4.2.91)



Hence, we have [..Nids = 0.

0 0
vy, o d < vg; >

8x,~ 8x,~ =0

We obtain macroscpic second grade modelling of saturated porous matrix by homogenization

0 0
a<oij>_<9<TSl.j>

ax]' 8xj
0
Y Ix

P o
< Xgijk >=<bijkimn erijqusa*yq(eyrs(éh ) > Txh(exmn(”g))

0
< 0;; >=<Gijmn > exmn(ug) — ¢p01,~j

d <V > _o
8x,~
oul, 1 ap°
0 Si 14
;> — — kijdV—
VRTS8 T Jo, Y o,
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(4.2.92)

(4.2.93)

(4.2.94)

(4.2.95)

(4.2.96)

(4.2.97)

(4.2.98)



Chapter 5

Conclusions

This master project mainly focused on finding a macroscopic second grade model of a one dimensional periodic
medium, an empty porous matrix and a saturated porous matrix using the asymptotic homogenization method. The
results of this method present similarities with the original analysis performed with partial differential equations.

The main difference that was observed in this work, is the fact that no boundary conditions applied in the sample.

Moreover, the double scale asymptotic expansion method was chosen as the appropriate method to study hetero-
geneous periodic materials and the model of homogenization method is equivalent model without the boundary

condition of solid or interface condition between the solid and fluid.

By using the asymptotic homogenization method, second grade models could be determined for saturtated porous

media.

Finally, the subject of this project has been studied to a certain extent, due to the short period that was dedicate for
it. However, some perspectives for future work would include the application of these models to alternative, real
materials. Also the numerical solution of the same models under loading would also be interesting to study future.

39



Bibliography

[1] J.L. Auriault. Homogenization: Application to porous saturated media. Summer school on two
phase medium Mechanics, Gdansk, 1983.

[2] J.L. Auriault. Transport in porous media: Upscaling by multiscale asymptotic expansions. CISM
International Centre for Mechanical Sciences, 480:3-56, 2005.

[3] D. Caillerie. Homogenization of periodic media. Geomaterials: Constitutive Equations and
Modelling, England, 1990.

[4] F. Collin el al. Analytical solutions for the thick-walled cylinder problem modeled with an
isotropic elastic second gradient constitutive equation. International Journal of Solids and
Structures, 46:3927-3937, 2009.

[5] R. Chambon el al. One-dimensional localisation studied with second grade model. European
Journal of Mechanics-A/Solids, 17(4):637-656, 1998.

[6] P. Germain. La methode des puissances virtuelles en mecanique des milieux continus: Premiere

partie: theorie du second gradient. Journal de Mecanique, 12:235-274, 1973a.

[7] P.E. Sanchez. Comportement local et macroscopique d’un type de milieux physiques

heterogenes. International Journal of Engineering Science, 12(1):331-351, 1974.

[8] P.E. Sanchez. Non Homogeneous Media and Vibration Theory.-Lectures Notes in Physics.
Springer Verlag, Berlin Heidelberg New York, 1980.

40



	masters_thesis_title_page
	Abstract
	new_report

