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Abstract 
 

The scope of this mater project is to investigate the macroscopic second grade modeling of a saturated 
porous matrix by double scale asymptotic expansion method. Strain localization is modeled by the 
second grade modeling which considered the second derivative displacement, and it is obtained from 
the virtual power formulation. The homogenization method is used to solve partial differential 
equations in the heterogeneous materials with a periodic structure. Each quantity (such as displacement, 
force, stress and water pressure) of the model is expanded (double scale) and was put them into partial 
differential equations. Then, the mean quantities were obtained a long with the macroscopic second 
grade models by the homogenization process. The modeling is equivalent to those without any 
boundary condition of solid or interface condition between solid and fluid inside the sample. In this 
report we investigated the macroscopic second grade modeling of 1D periodic medium, empty porous 
matrix and saturated porous matrix. 
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Chapter 1

Introduction

Strain localization is an important phenomenon in geomaterials. However, classical theory of continuous media is
unable to correctly model it. Different methods have been proposed to overcome the inadequacies of the classical
theory of continuoum media. Second grade model considers the second derivative of the displacement field in the
constitutive equation. The method is generally used to produce balance equations by virtual power Germain [6].
Chambon et al. [5] proved the one dimensional second grade model using the aforementioned method. Collin et
al. [4] researched the thick-walled cylinder problem by the second grade modeling which is three dimensional.

An example of the one dimensional second grade model is presented by virtual power and it is similar to the one
Chambon et al. [5]. The case study consists of a bar (0,1) with zero displacement at L(0) and without gravity
force.

We define N = au′ and M = bu′′. The internal virtual power is

∀u∗, pi(u∗) =−
ˆ 1

0
(Nu∗′+Mu∗′′)dx (1.0.1)

and the external virtual power is

∀u∗, pe(u∗) = F0u∗(0)+F1u∗(1)+M0u∗′(0)+M1u∗′(1) (1.0.2)

Using u∗(0) = 0, the virtual power formulation is

ˆ 1

0
(Nu∗′+Mu∗′′)dx = F1u∗(1)+M0u∗′(0)+M1u∗′(1) (1.0.3)

Defining T = dM
dx , the force is found to be F1 = N(1)−T (1), M0 =−M(0).

Using u∗(0) = 0, equation (1.0.3) is writen as

N(1)u∗(1)−
ˆ 1

0
(N

du∗

dx
)dx+M(1)u∗′(1)−M(0)u∗′(0)−

ˆ 1

0
(M

du∗′

dx
)dx−T (1)u∗(1) = 0 (1.0.4)
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Using the integrating by parts, we get

ˆ 1

0

dN
dx

u∗dx+
ˆ 1

0

dM
dx

du∗

dx
dx−T (1)u∗(1) = 0 (1.0.5)

Using u∗(0) = 0 and the integrating by parts again, we have

∀u∗,
ˆ 1

0

dN
dx

u∗dx−
ˆ 1

0

dT
dx

u∗dx = 0 (1.0.6)

Hence, the strong formulation is

d
dx

(N−T ) = 0 (1.0.7)

T =
dM
dx

(1.0.8)

N = au′ (1.0.9)

M = bu′′ (1.0.10)

with limit conditions F1 = N(1)−T (1), M0 =−M(0) and u(0) = 0.

This is the one dimensional second grade model and it is similar for three dimentional. We obtain the three
dimensional second grade balance equation and boundary conditions by the virtual power and they describe the
heterogeneous materials.

There are lots of examples of heterogeneous materials in the context of civil engineering, such as soil mass, rock
mass and concrete etc. Heterogeneous media with a large number of heterogeneities cannot be described by con-
sidering each of the heterogeneities, which would yield to intractable boundary value problems. Generally, we use
behavior of large scale (macroscopic scale) to respect the heterogeneity scale. It means using a simpler equivalent
continuous medium of macroscopic behavior and macroscopic boundary conditions to research heterogeneous
materials.

The homogenization method is one of equivalent methods for periodic structure. Homogenization method is also
called double scale asymptotic expansions for periodic media which all coefficients and geometry are supposed
to be spatially periodic. Sanchez [7] firstly used this material. It is widely used, such as in elasticity media by
Sanchez [8], in filtration by Caillerie [3] and in saturated porous media by Auriault [2]. Heuristically, the method
is based on the consideration of two length scales associated with the macroscopic scale (x) and microscopic scale
(y = x

ε
, with ε tend to zero).

The double scale asymptotic expansion method has the following steps Fig. 1.0.1):

3



Figure 1.0.1: Method of double scale asymptotic expansions

1. We start with the second grade model of ordinary differential equations (1D problem) or partial differential
equations in the heterogeneous materials with a periodic, that is macroscopic materials with variable x.

2. If aε
i jmn does not depend on x, the solid is homogeneous. On the other hand, if aε

i jmn depend on x, the solid
is not homogeneous, such as solid consist of two different materials, and we define the constitutive stiffness
aε

i jmn(x) = ai jmn(
x
ε
) = ai jmn(y).

3. We look for each physical quantity, such as displacement, force, stress and water pressure (generally denoted
by ψε(x)) as double scale expansion form.

ψ
ε(x) = ψ

0(x,
x
ε
)+ εψ

1(x,
x
ε
)+ ε

2
ψ

2(x,
x
ε
)+ · · · (1.0.11)

The formulation above is the general form. However, some quantities may have power ε less than 0. In fact,
equation (1.0.11) indicates that ψε is a smooth function ψ0(x) plus a slightly high oscillating term.

4. We take the quantity of double scale expansion into partial (or ordinary) differential equations of model.

5. We have the different order partial differential equations with the boundary conditions. We can solve every
physical quantity ψ0.

6. We need to do the volume average of balance equation at ε0 with respect to y over the period Ω, such as

<
∂σ0

i j

∂x j
>−<

∂T 0
i j

∂x j
>=− 1

|Ω |

ˆ
Ωy

(
∂σ1

i j

∂y j
−

∂T 1
i j

∂y j
)dV (1.0.12)

Then, we obtain the macroscpic second grade modelling by homogenzation.

This present study focuses on three macroscpic second grade models by the double scale asymptotic expansions
method that are second grade modelling of one dimenional periodic media, empty porous matrix and saturated
porous matrix in following chapters.
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Chapter 2

Second grade modelling of one
dimensional periodic medium

In this chapter, we investigate the macroscopic behaviour of second grade of one dimensional periodic medium
by the double scale asymptotic expansion method. This basic problem helps us to understand how to use the
asymptotic expansion approch and gives us a basic idea for empty porous matrix and saturated porous media.

2.1 One dimensional periodic medium description

The one dimensional medium under consideration has a periodic strcuture (Fig. 2.1.1), the period being small.
The period Y is a segment of length L. There are more than one materials of every period and the constitutive law
stiffnesses aε and bε depend on x.

Figure 2.1.1: One dimensional periodic medium

The second grade modelling in this medium is given in the following equations in which gravity is not considered.

d
dx

(Nε −T ε) = 0 (2.1.1)

T ε(x) =
dMε

dx
(2.1.2)
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Mε(x) = bε(x)
dEε

dx
(2.1.3)

Nε(x) = aε(x)Eε (2.1.4)

Eε(x) =
duε

dx
(2.1.5)

2.2 Second grade modelling of one dimensional periodic medium

For the implementation of the asymptotic method (ε is supposed to tend to zero), the function bε(x) and aε(x) are
defined by :

aε(x) = b(
x
ε
) = a(y) (2.2.1)

bε(x) = b(
x
ε
) = b(y) (2.2.2)

We look for the displacement uε(x) as double scale expansion,

uε(x) = u0(x,
x
ε
)+ εu1(x,

x
ε
)+ ε

2u2(x,
x
ε
)+ ε

3u3(x,
x
ε
)+ · · · (2.2.3)

The normal force Nε(x) is the first derivative uε(x) and the force Mε(x) is the second grade uε(x) . The ε power
of first term of force expansion is the same as the first term of the constitutive equation expansion. Hence, we look
for Nε(x) and Mε(x)

Nε(x) =
1
ε

N−1(x,
x
ε
)+N0(x,

x
ε
)+ εN0(x,

x
ε
)+ · · · (2.2.4)

Mε(x) =
1
ε2 M−2(x,

x
ε
)+

1
ε

M−1(x,
x
ε
)+M0(x,

x
ε
)+ εM1(x,

x
ε
)+ · · · (2.2.5)

with y = x/ε . ui, Ni and Mi are y-periodic, with period Y .

When substituting the expansions (2.2.3) and (2.2.5) into equations (2.1.5) and (2.1.2), it is convenient to replace
the operator ∂

∂xi
by ∂

∂xi
+ 1

ε

∂

∂yi
which yields:

Eε(x) =
1
ε

∂u0

∂y
+

∂u0

∂x
+

∂u1

∂y
+ ε(

∂u1

∂x
+

∂u2

∂y
)+ ε

2(
∂u2

∂x
+

∂u3

∂y
)+ · · · (2.2.6)
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T ε(x) =
1
ε3

∂M−2

∂y
+

1
ε2 (

∂M−2

∂x
+

∂M−1

∂y
)+

1
ε
(

∂M−1

∂x
+

∂M0

∂y
)+

∂M0

∂x
+

∂M1

∂y
+ · · · (2.2.7)

We define T−3(x,y) = ∂M−2

∂y , T−2(x,y) = ∂M−2

∂x + ∂M−1

∂y , T−1(x,y) = ∂M−1

∂x + ∂M0

∂y · · · and equation (2.2.7) is written
as

T ε(x) =
1
ε3 T−3(x,y)+

1
ε2 T−2(x,y)+

1
ε

T−1(x,y)+T 0(x,y)+ · · · (2.2.8)

Using the expansions (2.2.8) and (2.2.4) into the balance equation (2.1.1), we get

− 1
ε4

∂T−3

∂y
− 1

ε3 (
∂T−3

∂x
+

∂T−2

∂y
)

− 1
ε2 (

∂T−2

∂x
− ∂N−1

∂y
+

∂T−1

∂y
)+

1
ε
(

∂N−1

∂x
− ∂T−1

∂x
+

∂N0

∂y
− ∂T 0

∂y
)

+(
∂N0

∂x
− ∂T 0

∂x
+

∂N1

∂y
− ∂T 1

∂y
)+ ε(

∂N1

∂x
− ∂T 1

∂x
+

∂N2

∂y
− ∂T 2

∂y
)+ · · ·= 0 (2.2.9)

Using the expansions (2.2.6) and (2.2.4) into the constitutive equation (2.1.4), we obtain

1
ε

N−1(x,y)+N0(x,y)+ εN0(x,y)+ · · ·= 1
ε

a
∂u0

∂y
+a(

∂u0

∂x
+

∂u1

∂y
)+ εa(

∂u1

∂x
+

∂u2

∂y
)+ · · · (2.2.10)

Using the expansions (2.2.5) and (2.2.6) into the constitutive equation (2.1.3) is writen

1
ε2 M−2(x,y)+

1
ε

M−1(x,y)+M0(x,y)+ · · ·

=
1
ε2 b

∂ 2u0

∂y2 +
1
ε

b(2
∂ 2u0

∂x∂y
+

∂ 2u1

∂y2 )+b(
∂ 2u0

∂x2 +2
∂ 2u1

∂x∂y
+

∂ 2u2

∂y2 )+ · · · (2.2.11)

One of periods is Y in inside medium, for example (0, L).

We obtain at the first order a periodicity boundary value problem for u0:

∂T−3

∂y
= 0 (2.2.12)

T−3(x,y) =
∂M−2

∂y
(2.2.13)

M−2(x,y) = b(y)
∂ 2u0

∂y2 (2.2.14)
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and the periodicity conditions

The integral in equation (2.2.12) with respect to y is

T−3(x,y) = α1 (2.2.15)

where α1 does not depend on y.

Equation ∂M−2

∂y = α1 is integrable with respect to y again

M−2(x,y) = α1y+β1 (2.2.16)

where β1 does not depend on y.

Y is periodic thus M−2(x,0) = M−2(x,L). We get α1 = 0 and M−2(x,y) = β1. Equation ∂ 2u0

∂y2 = β1
b(y) is integrable

with respect to y

∂u0

∂y
= β1

ˆ y

0

1
b(y)

dy+ γ1 (2.2.17)

where γ1 does not depend on y.

Due to fact that Y is periodic, we get ∂u0

∂y (x,0) =
∂u0

∂y (x,L). Consequently, we obtain β1 = 0 and M−2(x,y) = 0.

Equation ∂u0

∂y = γ1 is integrable with respect to y

u0(x,y) = γ1y+δ1 (2.2.18)

where δ1 does not depend on y.

Y is periodic thus u0(x,0) = u0(x,L). Then we obtain γ1 = 0 and ∂u0

∂y = 0.

Summarizing, we obtain M−2(x,y) = 0 and u0 = u0(x).

At the following order, we obtain a periodicity boundary value problem for u1.

∂T−3

∂x
+

∂T−2

∂y
= 0 (2.2.19)

T−3(x,y) =
∂M−2

∂y
and T−2(x,y) =

∂M−2

∂x
+

∂M−1

∂y
(2.2.20)

M−1(x,y) = b(y)(2
∂ 2u0

∂x∂y
+

∂ 2u1

∂y2 ) (2.2.21)

and the periodicity conditions

Using M−2(x,y) = 0 and u0 = u0(x), we get that
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∂T−2

∂y
= 0 (2.2.22)

T−2(x,y) =
∂M−1

∂y
(2.2.23)

M−1(x,y) = b(y)
∂ 2u1

∂y2 (2.2.24)

and the periodicity conditions

The form is same as first order. Furthermore, we obtain M−1(x,y) = 0 and u1 = u1(x).

At the following order, we obtain a periodicity boundary value problem for u2.

∂T−2

∂x
− ∂N−1

∂y
+

∂T−1

∂y
= 0 (2.2.25)

T−2(x,y) =
∂M−2

∂x
+

∂M−1

∂y
and T−1(x,y) =

∂M−1

∂x
+

∂M0

∂y
(2.2.26)

M0(x,y) = b(y)(
∂ 2u0

∂x2 +2
∂ 2u1

∂x∂y
+

∂ 2u2

∂y2 ) (2.2.27)

N−1(x,y) = a(y)
∂u0

∂y
(2.2.28)

and the periodicity conditions

Using M−2(x,y) = 0, u0 = u0(x), M−1(x,y) = 0 and u1 = u1(x), we have that

∂T−1

∂y
= 0 (2.2.29)

T−1(x,y) =
∂M0

∂y
(2.2.30)

M0(x,y) = b(y)(
∂ 2u0

∂x2 +
∂ 2u2

∂y2 ) (2.2.31)

and the periodicity conditions

By the same way as the first order, we get T−1 = 0 and M0 does not depend on y.

Equation (2.2.31) is written as
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M0(x)
b(y)

=
∂ 2u0

∂x2 +
∂ 2u2

∂y2 (2.2.32)

Equation (2.2.32) is integrable with respect to y.

M0(x)
ˆ y

0

1
b(y)

dy = y
∂ 2u0

∂x2 +

ˆ y

0

∂ 2u2

∂y2 dy (2.2.33)

We have ∂u2

∂y (x,0) =
∂u2

∂y (x,L) because Y is periodic and equation (2.2.33) is written as

M0(x) =
L´ L

0
1

b(y)dy

∂ 2u0

∂x2 (2.2.34)

At the following order, we obtain a periodicity boundary value problem for u3.

∂N−1

∂x
− ∂T−1

∂x
+

∂N0

∂y
− ∂T 0

∂y
= 0 (2.2.35)

T−1(x,y) =
∂M−1

∂x
+

∂M0

∂y
and T 0(x,y) =

∂M0

∂x
+

∂M1

∂y
(2.2.36)

M1(x,y) = b(y)(
∂ 2u1

∂x2 +2
∂ 2u2

∂x∂y
+

∂ 2u3

∂y2 ) (2.2.37)

N0(x,y) = a(y)(
∂u0

∂x
+

∂u1

∂y
) (2.2.38)

and the periodicity conditions

Using u1 = u1(x), we have

N0(x,y) = a(y)
∂u0

∂x
(2.2.39)

Consider the balance equation at order ε0, we obtain the following equations

∂N0

∂x
− ∂T 0

∂x
+

∂N1

∂y
− ∂T 1

∂y
= 0 (2.2.40)

T 0(x,y) =
∂M0

∂x
+

∂M1

∂y
(2.2.41)

and the periodicity conditions
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We average the equation (2.2.40) in periodic Y with respect to y and we obtain

<
∂N0

∂x
>−<

∂T 0

∂x
>+

1
L

ˆ L

0

∂N1

∂y
dy− 1

L

ˆ L

0

∂T 1

∂y
dy = 0 (2.2.42)

Using the periodicity of Y , we have N1(x,0) = N1(x,L) and T 1(x,0) = T 1(x,L) and we have that

<
∂N0

∂x
>−<

∂T 0

∂x
>= 0 (2.2.43)

Function N0 and T 0 are continuous functions so we can exchange order of integration and derivation.

<
∂N0

∂x
>=

1
L

ˆ L

0

∂N0

∂x
dy =

∂

∂x
(

1
L

ˆ L

0
N0dy) =

∂ < N0 >

∂x
(2.2.44)

We also have < ∂T 0

∂x >= ∂<T 0>
∂x and equation (2.2.43) is written

∂ < N0 >

∂x
− ∂ < T 0 >

∂x
= 0 (2.2.45)

We average equation (2.2.41) in periodic Y with respect to y and we have

< T 0(x,y)>=<
∂M0

∂x
>+

1
L

ˆ L

0

∂M1

∂y
dy (2.2.46)

Using M1(x,0) = M1(x,L) and exchanging ortder of integration and derivation, we get

< T 0(x)>=<
∂M0

∂x
>=

∂ < M0 >

∂x
(2.2.47)

We obtain macroscpic second grade modelling of 1D periodic medium by homogenization

∂ < N0(x)>
∂x

− ∂ < T 0(x)>
∂x

= 0 (2.2.48)

< T 0(x)>=
∂ < M0(x)>

∂x
(2.2.49)

< M0(x)>=<
L´ L

0
1

b(y)dy
>

∂ 2u0

∂x2 (2.2.50)

< N0(x)>=< a(y)>
∂u0

∂x
(2.2.51)
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Chapter 3

Second grade modelling of empty porous
matrix

In this chapter, we investigate the macroscopic behaviour of an empty porous matrix, which will appear as a
basic problem for the saturated case in the next chapter. The present study following Auriault [2] justifies the
macroscopic modelling of empty porous matrix and saturated porous matrix by homogenization without second
grade modelling.

3.1 Empty porous matrix description

We investigate the behavior of a periodic Galilean porous matrix with empty pores (no stress on Γ) (Fig. 3.1.1).

Figure 3.1.1: Periodic empty porous matrix
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There are solid Φ, boundary Γ and small period Ω. ai jmn and bi jkhmn are constants because there is the solid consist
of only one material. The second modelling of stress σ ε

i j(x), second grade stress χε
i jk(x) and displacement uε(x)

of the matrix verify the following equations where gravity is not considered:

in solid Φ

∂

∂x j
(σ ε

i j−T ε
i j) = 0 (3.1.1)

σ
ε
i j(x) = ai jmnexmn(uε) (3.1.2)

T ε
i j(x) =

∂ χε
i jk

∂xk
(3.1.3)

χ
ε
i jk(x) = bi jkhmn

∂exmn(uε)

∂xh
(3.1.4)

exmn(uε) =
1
2
(

∂uε
m

∂xn
+

∂uε
n

∂xm
) (3.1.5)

on boundary Γ

χ
ε
i jknk = 0 on Γ (3.1.6)

(σ ε
i j−T ε

i j )N j = 0 on Γ (3.1.7)

and boundary conditions outside the sample (unspecified here)

3.2 Second grade modelling of empty porous matrix

We look for uε(x) as double scale expansion, of the form:

uε(x) = u0(x,
x
ε
)+ εu1(x,

x
ε
)+ ε

2u2(x,
x
ε
)+ · · · (3.2.1)

and the form of stress σ ε
i j(x) and second grade stress χε

i jk(x) for the same reason as the 1D periodic media,

σ
ε
i j(x) =

1
ε

σ
−1
i j (x,

x
ε
)+σ

0
i j(x,

x
ε
)+ εσ

1
i j(x,

x
ε
)+ ε

2
σ

2
i j(x,

x
ε
)+ · · · (3.2.2)

χ
ε
i jk(x) =

1
ε2 χ

−2
i jk (x,

x
ε
)+

1
ε

χ
−1
i jk (x,

x
ε
)+χ

0
i jk(x,

x
ε
)+ εχ

1
i jk(x,

x
ε
)+ · · · (3.2.3)
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with y = x/ε , and where σ i, χ i
i jk and ui are y−periodic with period Ω.

When substituting the expansions (3.2.1) and (3.2.3) into the equations (3.1.5) and (3.1.3), we have

exmn(uε) =
1
ε

eymn(u0)+ exmn(u0)+ eymn(u1)+ ε(exmn(u1)+ eymn(u2))+ · · · (3.2.4)

T ε
i j(x) =

1
ε3

∂ χ
−2
i jk

∂yk
+

1
ε2 (

∂ χ
−2
i jk

∂xk
+

∂ χ
−1
i jk

∂yk
)+

1
ε
(

∂ χ
−1
i jk

∂xk
+

∂ χ0
i jk

∂yk
)+ · · · (3.2.5)

We define

T ε
i j(x) =

1
ε3 T−3

i j +
1
ε2 T−2

i j +
1
ε

T−1
i j + · · · (3.2.6)

where T−3
i j =

∂ χ
−2
i jk

∂yk
, T−2

i j =
∂ χ
−2
i jk

∂xk
+

∂ χ
−1
i jk

∂yk
, T−1

i j =
∂ χ
−1
i jk

∂xk
+

∂ χ0
i jk

∂yk
...

Using the expansion (3.2.6) into the banlance equation (3.1.1), we get

− 1
ε4

∂T−3
i j

∂y j
− 1

ε3 (
∂T−3

i j

∂x j
+

∂T−2
i j

∂y j
)− 1

ε2 (
∂T−2

i j

∂x j
−

∂σ
−1
i j

∂y j
+

∂T−1
i j

∂y j
)

+
1
ε
(

∂σ
−1
i j

∂x j
−

∂T−1
i j

∂x j
+

∂σ0
i j

∂y j
−

∂T 0
i j

∂y j
)+(

∂σ0
i j

∂x j
−

∂T 0
i j

∂x j
+

∂σ1
i j

∂y j
−

∂T 1
i j

∂y j
)+ · · ·= 0 (3.2.7)

By using the expansions (3.2.4) and (3.2.2) into the constitutive equation (3.1.2), we have

1
ε

σ
−1
i j (x,y)+σ

0
i j(x,y)+ εσ

1
i j(x,y)+ · · ·

=
1
ε

ai jmneymn(u0)+ai jmn(exmn(u0)+ eymn(u1))+ εai jmn(exmn(u1)+ eymn(u2))+ · · · (3.2.8)

Similarly, by using the expanstions (3.2.4) and (3.2.3) into the constitutive equation (3.1.4), we obtain

1
ε2 χ

−2
i jk (x,y)+

1
ε

χ
−1
i jk (x,y)+χ

0
i jk(x,y)+ εχ

1
i jk(x,y)+ · · ·

=
1
ε2 bi jkhmn(

∂

∂yh
(eymn(u0)))

+
1
ε

bi jkhmn(
∂

∂xh
(eymn(u0))+

∂

∂yh
(exmn(u0))+

∂

∂yh
(eymn(u1)))

+bi jkhmn(
∂

∂xh
(exmn(u0))+

∂

∂xh
(eymn(u1))+

∂

∂yh
(exmn(u1))+

∂

∂yh
(eymn(u2)))

+εbi jkhmn(
∂

∂xh
(exmn(u1))+

∂

∂xh
(eymn(u2))+

∂

∂yh
(exmn(u2))+

∂

∂yh
(eymn(u3)))+ · · · (3.2.9)
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Using the expanstion (3.2.3) into the equation of boundary condition (3.1.6) on Γ, we get

1
ε2 χ

−2
i jk nk +

1
ε

χ
−1
i jk nk +χ

0
i jknk + εχ

1
i jknk + ε

2
χ

2
i jknk + · · ·= 0 (3.2.10)

Using the expanstions (3.2.6) and (3.2.2) into the equation of boundary condition (3.1.7) on Γ, we have

− 1
ε3 T−3

i j N j−
1
ε2 T−2

i j N j +
1
ε
(σ−1

i j −T−1
i j )N j +(σ0

i j−T 0
i j)N j + ε(σ1

i j−T 1
i j)N j + · · ·= 0 (3.2.11)

The periodic Ω is illustrated in Fig. 3.2.1, which is inside the sample. Γ and ∂ΩS ∩ ∂Ω are boundaries of ΩS .
There are six normal unit vectors pointing outwards

−→
N1 (
−→
n1) on ∂Ω1+, −

−→
N1 (−

−→
n1) on ∂Ω1−,

−→
N2 (
−→
n2) on ∂Ω2+,

−
−→
N2 (−

−→
n2) on ∂Ω2−,

−→
N3 (
−→
n3) on ∂Ω3+ and −

−→
N3 (−

−→
n3) on ∂Ω3−.

Figure 3.2.1: A periodic Ω of the empty porous matrix in the sample

We obtain a lowest order a boundary value problem for u0:

in solid ΩS,

∂T−3
i j

∂y j
= 0 (3.2.12)

T−3
i j =

∂ χ
−2
i jk

∂yk
(3.2.13)

χ
−2
i jk = bi jkhmn(

∂

∂yh
(eymn(u0))) (3.2.14)
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boundary conditions on Γ,

χ
−2
i jk nk = 0 on Γ (3.2.15)

T−3
i j N j = 0 on Γ (3.2.16)

periodicity conditions on ∂ΩS∩∂Ω,

χ
−2
i jk @n1

k = Π
1
i j, T−3

i j @N1
j = F1

i on ∂ΩS∩∂Ω
1+ (3.2.17)

χ
−2
i jk @(−n1

k) =−Π
1
i j, T−3

i j @(−N1
j ) =−F1

i on ∂ΩS∩∂Ω
1− (3.2.18)

χ
−2
i jk @n2

k = Π
2
i j, T−3

i j @N2
j = F2

i on ∂ΩS∩∂Ω
2+ (3.2.19)

χ
−2
i jk @(−n2

k) =−Π
2
i j, T−3

i j @(−N2
j ) =−F2

i on ∂ΩS∩∂Ω
2− (3.2.20)

χ
−2
i jk @n3

k = Π
3
i j, T−3

i j @N3
j = F3

i on ∂ΩS∩∂Ω
3+ (3.2.21)

χ
−2
i jk @(−n3

k) =−Π
3
i j, T−3

i j @(−N3
j ) =−F3

i on ∂ΩS∩∂Ω
3− (3.2.22)

We look for ∀m,n, ∂u0
m

∂yn
= 0 (u0 = u0(x) ). The constitutive equations (3.2.13) and (3.2.14) become

χ
−2
i jk = 0 (3.2.23)

T−3
i j = 0 (3.2.24)

We can find balance equantion (3.2.12) and all boundary conditions which they are satisfied. They are possible to
show the solutions u0 = u0(x) , χ

−2
i jk = 0 and T−3

i j = 0, in fact, unique.

To understand boundary condtion of T−3
i j on Γ and on ∂ΩS ∩ ∂Ω, we need to introduce the weak formulation.

Equation (3.2.12) is multiplied by any virtual velocity field vi and then integrated over Ω with respect y. After
integrating by parts and using the divergence theorem, we have

∀vi ,

ˆ
ΩS

∂T−3
i j

∂y j
vidV = 0 (3.2.25)
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−
ˆ

ΩS

T−3
i j

∂vi

∂y j
dV +

ˆ
∂ΩS

T−3
i j N jvids = 0 (3.2.26)

where

ˆ
∂ΩS

T−3
i j N jvids =

ˆ
Γ

T−3
i j N jvids+

ˆ
∂ΩS∩∂Ω

T−3
i j N jvids (3.2.27)

we get
´

Γ
T−3

i j N jvids = 0 because T−3
i j N j = 0 on Γ.

ˆ
∂ΩS∩∂Ω

T−3
i j N jvids =

ˆ
∂ΩS∩∂Ω1+

(T−3
i j @N1

j )• vids+
ˆ

∂ΩS∩∂Ω1−
(T−3

i j @(−N1
j ))• vids

+

ˆ
∂ΩS∩∂Ω2+

(T−3
i j @N2

j )• vids+
ˆ

∂ΩS∩∂Ω2−
(T−3

i j @(−N2
j ))• vids

+

ˆ
∂ΩS∩∂Ω3+

(T−3
i j @N3

j )• vids+
ˆ

∂ΩS∩∂Ω3−
(T−3

i j @(−N3
j ))• vids (3.2.28)

Using the periodicity conditions on ∂ΩS∩∂Ω, we get

ˆ
∂ΩS∩∂Ω

T−3
i j N jvids = F1

i −F1
i +F2

i −F2
i +F3

i −F3
i = 0 (3.2.29)

∀vi ,

ˆ
ΩS

T−3
i j

∂vi

∂y j
dV = 0 (3.2.30)

Similarly, to understand boundary condtions of χ
−2
i jk on Γ and on ∂ΩS ∩ ∂Ω, we use the same way for equation

(3.2.13)

∀E∗i j ,

ˆ
ΩS

∂ χ
−2
i jk

∂yk
E∗i jdV −

ˆ
ΩS

T−3
i j E∗i jdV = 0 (3.2.31)

−
ˆ

ΩS

χ
−2
i jk

∂E∗i j

∂yk
dV +

ˆ
∂ΩS

χ
−2
i jk nkE∗i jds−

ˆ
ΩS

T−3
i j E∗i jdV = 0 (3.2.32)

ˆ
∂ΩS

χ
−2
i jk nkE∗i jds =

ˆ
Γ

χ
−2
i jk nkE∗i jds+

ˆ
∂ΩS∩∂Ω

χ
−2
i jk nkE∗i jds (3.2.33)

Using χ
−2
i jk nk = 0 on Γ and periodicity conditions on ∂ΩS∩∂Ω, we have that

ˆ
∂ΩS

χ
−2
i jk nkE∗i jds = 0 (3.2.34)
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∀E∗i j ,

ˆ
ΩS

χ
−2
i jk

∂E∗i j

∂yk
dV +

ˆ
ΩS

T−3
i j E∗i jdV = 0 (3.2.35)

At the following order, we obtain a boundary value problem for u1 that

in solid ΩS,

∂T−3
i j

∂x j
+

∂T−2
i j

∂y j
= 0 (3.2.36)

T−3
i j =

∂ χ
−2
i jk

∂yk
(3.2.37)

T−2
i j =

∂ χ
−2
i jk

∂xk
+

∂ χ
−1
i jk

∂yk
(3.2.38)

χ
−1
i jk = bi jkhmn(

∂

∂xh
(eymn(u0))+

∂

∂yh
(exmn(u0))+

∂

∂yh
(eymn(u1))) (3.2.39)

on boundary Γ,

χ
−1
i jk nk = 0 on Γ (3.2.40)

T−2
i j N j = 0 on Γ (3.2.41)

and the periodicity conditions on ∂ΩS∩∂Ω

Using the results of χ
−2
i jk = 0, u0 = u0(x), and T−3

i j = 0, we obtain that

in solid ΩS,

∂T−2
i j

∂y j
= 0 (3.2.42)

T−2
i j =

∂ χ
−1
i jk

∂yk
(3.2.43)

χ
−1
i jk = bi jkhmn

∂

∂yh
(eymn(u1)) (3.2.44)

on boundaryΓ,
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χ
−1
i jk nk = 0 on Γ (3.2.45)

T−2
i j N j = 0 on Γ (3.2.46)

and the periodicity conditions on ∂ΩS∩∂Ω

We obtain a same form as the first order and we also get solutions u1 = u1(x) , χ
−1
i jk = 0 and T−2

i j = 0.

At the following order, we obtain a boundary value problem for u2:

in solid ΩS,

∂T−2
i j

∂x j
−

∂σ
−1
i j

∂y j
+

∂T−1
i j

∂y j
= 0 (3.2.47)

T−1
i j =

∂ χ
−1
i jk

∂xk
+

∂ χ0
i jk

∂yk
(3.2.48)

χ
0
i jk = bi jkhmn(

∂

∂xh
(exmn(u0))+

∂

∂xh
(eymn(u1))+

∂

∂yh
(exmn(u1))+

∂

∂yh
(eymn(u2))) (3.2.49)

σ
−1
i j (x,y) = ai jmneymn(u0) (3.2.50)

on boundary Γ,

χ
0
i jknk = 0 on Γ (3.2.51)

(σ−1
i j −T−1

i j )N j = 0 on Γ (3.2.52)

and the periodicity conditions on ∂ΩS∩∂Ω

By using χ
−1
i jk = 0, χ

−2
i jk = 0, u0 = u0(x) , u1 = u1(x), we obtain

in solid ΩS,

∂T−1
i j

∂y j
= 0 (3.2.53)

T−1
i j =

∂ χ0
i jk

∂yk
(3.2.54)
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χ
0
i jk = bi jkhmn(

∂

∂xh
(exmn(u0))+

∂

∂yh
(eymn(u2))) (3.2.55)

on boundary Γ,

χ
0
i jknk = 0 on Γ (3.2.56)

T−1
i j N j = 0 on Γ (3.2.57)

and the periodicity conditions on ∂ΩS∩∂Ω

The unknown u2 is a linear vectorial function of ∂

∂x (ex(u0)) and we enable to look for u2 in form:

u2
p = ξ

qrs
p

∂

∂xq
(exrs(u0))+u2

p(x) (3.2.58)

The χ0
i jk and T−1

i j can be written:

χ
0
i jk = bi jkhmn(

∂

∂xh
(exmn(u0))+

∂

∂yh
(eymn(u2)))

= bi jkhmn(
∂

∂xh
(exmn(u0))+

∂

∂yh
(eymn(ξ

qrs))
∂

∂xq
(exrs(u0)))

= (bi jkhmn +bi jkqrs
∂

∂yq
(eyrs(ξ

hmn)))
∂

∂xh
(exmn(u0)) (3.2.59)

T−1
i j =

∂ χ0
i jk

∂yk
=

∂ (bi jkhmn +bi jkqrs
∂

∂yq
(eyrs(ξ

hmn)))

∂yk

∂

∂xh
(exmn(u0)) (3.2.60)

we shall check the equation
∂T−1

i j
∂y j

,

∂T−1
i j

∂y j
=

∂ 2(bi jkhmn +bi jkqrs
∂

∂yq
(eyrs(ξ

hmn)))

∂y j∂yk

∂

∂xh
(exmn(u0)) (3.2.61)

If the function ξ hmn satisfies the equation,

∂ 2(bi jkhmn +bi jkqrs
∂

∂yq
(eyrs(ξ

hmn)))

∂y j∂yk
= 0 (3.2.62)

we obtain
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∂T−1
i j

∂y j
= 0 (3.2.63)

Using χ0
i jk to check the equation χ0

i jknk, it is written

(bi jkhmn +bi jkqrs
∂

∂yq
(eyrs(ξ

hmn)))
∂

∂xh
(exmn(u0))nk (3.2.64)

If the function ξ hmn satisfies the equation,

(bi jkhmn +bi jkqrs
∂

∂yq
(eyrs(ξ

hmn)))nk = 0 (3.2.65)

we get χ0
i jknk = 0 on Γ.

we check to the equation T−1
i j N j and we get

∂ (bi jkhmn +bi jkqrs
∂

∂yq
(eyrs(ξ

hmn)))

∂yk

∂

∂xh
(exmn(u0))N j (3.2.66)

If the function ξ hmn satisfies the equation,

∂ (bi jkhmn +bi jkqrs
∂

∂yq
(eyrs(ξ

hmn)))

∂yk
= 0 (3.2.67)

we get T−1
i j N j = 0 on Γ.

Summary, ξ hmn is solution of

∂ 2(bi jkhmn +bi jkqrs
∂

∂yq
(eyrs(ξ

hmn)))

∂y j∂yk
= 0 (3.2.68)

∂ (bi jkhmn +bi jkqrs
∂

∂yq
(eyrs(ξ

hmn)))

∂yk
= 0 on Γ (3.2.69)

(bi jkhmn +bi jkqrs
∂

∂yq
(eyrs(ξ

hmn)))nk = 0 on Γ (3.2.70)

u0, χ0
i jk and T−1

i j are possible solutions, in fact, which are unique.

At the following order, we obtain a boundary value problem for u3:

in solid ΩS,
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∂σ
−1
i j

∂x j
−

∂T−1
i j

∂x j
+

∂σ0
i j

∂y j
−

∂T 0
i j

∂y j
= 0 (3.2.71)

T 0
i j =

∂ χ0
i jk

∂xk
+

∂ χ1
i jk

∂yk
(3.2.72)

χ
1
i jk = bi jkhmn(

∂

∂xh
(exmn(u1))+

∂

∂xh
(eymn(u2))+

∂

∂yh
(exmn(u2))+

∂

∂yh
(eymn(u3))) (3.2.73)

σ
0
i j(x,y) = ai jmn(exmn(u0)+ eymn(u1)) (3.2.74)

on boundary Γ,

χ
1
i jknk = 0 on Γ (3.2.75)

(σ0
i j−T 0

i j)N j = 0 on Γ (3.2.76)

and the periodicity conditions on ∂ΩS∩∂Ω

Using u1 = u1(x), we obtain

σ
0
i j(x,y) = ai jmnexmn(u0) (3.2.77)

Finally, a boundary value problem for u4 is obtained at the following order

in solid ΩS,

∂σ0
i j

∂x j
−

∂T 0
i j

∂x j
+

∂σ1
i j

∂y j
−

∂T 1
i j

∂y j
= 0 (3.2.78)

T 0
i j =

∂ χ0
i jk

∂xk
+

∂ χ1
i jk

∂yk
(3.2.79)

on boundary Γ,

χ
1
i jknk = 0 on Γ (3.2.80)

(σ1
i j−T 1

i j)N j = 0 on Γ (3.2.81)
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periodicity conditions on ∂ΩS∩∂Ω,

χ
1
i jk@n1

k = Π
4
i j, (σ1

i j−T 1
i j)@N1

j = F4
i , on ∂ΩS∩∂Ω

1+ (3.2.82)

χ
1
i jk@(−n1

k) =−Π
4
i j, (σ1

i j−T 1
i j)@(−N1

j ) =−F4
i , on ∂ΩS∩∂Ω

1− (3.2.83)

χ
1
i jk@n2

k = Π
5
i j, (σ1

i j−T 1
i j)@N2

j = F5
i , on ∂ΩS∩∂Ω

2+ (3.2.84)

χ
1
i jk@(−n2

k) =−Π
5
i j, (σ1

i j−T 1
i j)@(−N2

j ) =−F5
i , on ∂ΩS∩∂Ω

2− (3.2.85)

χ
1
i jk@n3

k = Π
6
i j, (σ1

i j−T 1
i j)@N3

j = F6
i , on ∂ΩS∩∂Ω

3+ (3.2.86)

χ
1
i jk@(−n3

k) =−Π
6
i j, (σ1

i j−T 1
i j)@(−N3

j ) =−F6
i , on ∂ΩS∩∂Ω

3− (3.2.87)

Averaging equation (3.2.78) in volume Ω with respect to y and using the divergence theorem , we have

<
∂σ0

i j

∂x j
>−<

∂T 0
i j

∂x j
>=− |Ω |−1

ˆ
ΩS

(
∂σ1

i j

∂y j
−

∂T 1
i j

∂y j
)dV =− |Ω |−1

ˆ
∂ΩS

(σ1
i j−T 1

i j)N jds

=− |Ω |−1 (

ˆ
Γ

(σ1
i j−T 1

i j)N jds+
ˆ

∂ΩS∩∂Ω

(σ1
i j−T 1

i j)N jds) (3.2.88)

Using
´

∂ΩS∩∂Ω
(σ1

i j − T 1
i j)N jds = 0 by periodicity conditions on ∂ΩS ∩ ∂Ω and using the boundary conditions

(σ1
i j−T 1

i j)N j = 0 on Γ , we get

<
∂σ0

i j

∂x j
>−<

∂T 0
i j

∂x j
>= 0 (3.2.89)

Exchanging order of integration and derivative, we get

<
∂σ0

i j

∂x j
>−<

∂T 0
i j

∂x j
>=

∂ < σ0
i j >

∂x j
−

∂ < T 0
i j >

∂x j
= 0 (3.2.90)

We average equation (3.2.79) in volume Ω with respect to y and use the divergence theorem , we have
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< T 0
i j >=<

∂ χ0
i jk

∂xk
>+ |Ω |−1

ˆ
ΩS

∂ χ1
i jk

∂yk
dV =<

∂ χ0
i jk

∂xk
>+ |Ω |−1

ˆ
∂ΩS

χ
1
i jknkds

=<
∂ χ0

i jk

∂xk
>+ |Ω |−1

ˆ
Γ

χ
1
i jknkds+ |Ω |−1

ˆ
∂ΩS∩∂Ω

χ
1
i jknkds (3.2.91)

We have|Ω |−1 ´
∂ΩS

χ1
i jknkds = 0 by periodicity conditions on ∂ΩS∩∂Ω and χ1

i jknk = 0 on Γ and . We get

< T 0
i j >=<

∂ χ0
i jk

∂xk
>=

∂ < χ0
i jk >

∂xk
(3.2.92)

We obtain macroscpic second grade modelling of empty porous matrix by homogenization

∂ < σ0
i j >

∂x j
−

∂ < T 0
i j >

∂x j
= 0 (3.2.93)

< T 0
i j >=

∂ < χ0
i jk >

∂xk
(3.2.94)

< σ
0
i j >=< ai jmn > exmn(u0) (3.2.95)

< χ
0
i jk >=< bi jkhmn +bi jkqrs

∂

∂yq
(eyrs(ξ

hmn))>
∂

∂xh
(exmn(u0)) (3.2.96)
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Chapter 4

Second grade modelling of saturated
porous matrix

4.1 Saturated porous matrix description

We are investigating the macroscopic behaviour of a saturated porous matrix which contains a filtrating fluid when
the movement is quasi-static: velocities are small and accelerations are negligible. Both solid and fliud parts are
connected. For the sake of simplicity, we adopt the following hypotheses: (1) the material comprising of the
porous matrix is same that was described in chapter 3; (2) the fluid is viscous Newtonian and incompressible; (3)
the viscosity is a constant. The saturated porous matrix is illustrated (Fig. 4.1.1) which consists of solid ΦS, fluid
ΦF and interface Γ.

Figure 4.1.1: Periodic saturated porous matrix
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The pore scale behaviour is same the empty porous matrix in solid ΦS, and is Navier-Stokes equation the fluid
ΦF . The viscosity coefficient is µε2 because it represents a biphasic macroscopic behaviour. In other words, the
fluid can only flow when the viscosity coefficient is small. The pore scale behaviour is as follows:

in solid ΦS,

∂

∂x j
(σ ε

Si j−T ε
Si j) = 0 (4.1.1)

σ
ε
Si j(x, t) = ai jmnexmn(uε

S) (4.1.2)

T ε
Si j(x, t) =

∂ χε
Si jk

∂xk
(4.1.3)

χ
ε
Si jk(x, t) = bi jkhmn

∂exmn(uε
S)

∂xh
(4.1.4)

exmn(uε
S) =

1
2
(

∂uε
m

∂xn
+

∂uε
n

∂xm
) (4.1.5)

in fluid ΦF ,

∂σ ε
Fi j

∂x j
= 0 (4.1.6)

σ
ε
Fi j(x, t) = 2µε

2Dε
i j− pε Ii j (4.1.7)

Dε
i j =

1
2
(

∂vε
Fi

∂x j
+

∂vε
F j

∂xi
) (4.1.8)

and the incompressibility condition

∂vε
Fi

∂xi
= 0 (4.1.9)

on interface Γ,

χ
ε
Si jknk = 0 on Γ (4.1.10)

(σ ε
Si j−T ε

Si j)N j = σ
ε
Fi jN j on Γ (4.1.11)
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vε
Si = vε

Fi on Γ (4.1.12)

and boundary conditions outside the sample (unspecified here)

4.2 Second grade modelling of saturated porous matrix

We look for uε
S, vε

F and pε by the double scale expansion in the form:

uε
S(x, t) = u0

S(x,
x
ε
, t)+ εu1

S(x,
x
ε
, t)+ ε

2u2
S(x,

x
ε
, t)+ · · · (4.2.1)

vε
F(x, t) = v0

F(x,
x
ε
, t)+ εv1

F(x,
x
ε
, t)+ ε

2v2
F(x,

x
ε
, t)+ · · · (4.2.2)

pε(x, t) = p0(x,
x
ε
, t)+ ε p1(x,

x
ε
, t)+ ε

2 p2(x,
x
ε
, t)+ · · · (4.2.3)

and the form of stress σ ε
Si j(x), σ ε

Fi j(x) and second grade stress χε
Si jk(x) for the same reason as the 1D periodic

medium,

σ
ε
Fi j(x, t) = σ

0
Fi j(x,

x
ε
, t)+ εσ

1
Fi j(x,

x
ε
, t)+ ε

2
σ

2
Fi j(x,

x
ε
, t)+ · · · (4.2.4)

σ
ε
Si j(x, t) =

1
ε

σ
−1
Si j (x,

x
ε
, t)+σ

0
Si j(x,

x
ε
, t)+ εσ

1
Si j(x,

x
ε
, t)+ ε

2
σ

2
Si j(x,

x
ε
, t)+ · · · (4.2.5)

χ
ε
Si jk(x, t) =

1
ε2 χ

−2
Si jk(x,

x
ε
, t)+

1
ε

χ
−1
Si jk(x,

x
ε
, t)+χ

0
Si jk(x,

x
ε
, t)+ εχ

1
Si jk(x,

x
ε
, t)+ · · · (4.2.6)

with y = x/ε and where ui
S, vi

F , σ i
Si j, σ i

Fi j, χ i
Si jk and pi are y-periodic, with period Ω. Not that we have introduced

a possible time dependence which could be due to fliud volume change.

We analysis the pore scale behaviour by the double scale asymptotic expansions technique. It is same as the empty
porous matrix in solid ΦS.

exmn(uε
S) =

1
ε

eymn(u0
S)+ exmn(u0

S)+ eymn(u1
S)+ ε(exmn(u1

S)+ eymn(u2
S))+ · · · (4.2.7)

T ε
Si j(x, t) =

∂ χε
Si jk

∂xk
=

1
ε3

∂ χ
−2
Si jk

∂yk
+

1
ε2 (

∂ χ
−2
Si jk

∂xk
+

∂ χ
−1
Si jk

∂yk
)+

1
ε
(

∂ χ
−1
Si jk

∂xk
+

∂ χ0
Si jk

∂yk
)+ · · · (4.2.8)

We define
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T ε
Si j(x, t) =

1
ε3 T−3

Si j +
1
ε2 T−2

Si j +
1
ε

T−1
Si j +T 0

Si j + εT 1
Si j + ε

2T 2
Si j + · · · (4.2.9)

where T−3
Si j =

∂ χ
−2
Si jk

∂yk
, T−2

Si j =
∂ χ
−2
Si jk

∂xk
+

∂ χ
−1
Si jk

∂yk
, T−1

Si j =
∂ χ
−1
Si jk

∂xk
+

∂ χ0
Si jk

∂yk
, T 0

Si j =
∂ χ0

Si jk
∂xk

+
∂ χ1

Si jk
∂yk
· · · .

Using the expansions into the banlance equation (4.1.1), it is written

− 1
ε4

∂T−3
Si j

∂y j
− 1

ε3 (
∂T−3

Si j

∂x j
+

∂T−2
Si j

∂y j
)− 1

ε2 (
∂T−2

Si j

∂x j
−

∂σ
−1
Si j

∂y j
+

∂T−1
Si j

∂y j
)

+
1
ε
(

∂σ
−1
Si j

∂x j
−

∂T−1
Si j

∂x j
+

∂σ0
Si j

∂y j
−

∂T 0
Si j

∂y j
)+(

∂σ0
Si j

∂x j
−

∂T 0
Si j

∂x j
+

∂σ1
Si j

∂y j
−

∂T 1
Si j

∂y j
)+ · · ·= 0 (4.2.10)

Using the expansions into the constitutive equation (4.1.2) , we obtain

1
ε

σ
−1
Si j (x,y, t)+σ

0
Si j(x,y, t)+ εσ

1
Si j(x,y, t)+ · · ·

=
1
ε

ai jmneymn(u0
S)+ai jmn(exmn(u0

S)+ eymn(u1
S))+ εai jmn(exmn(u1

S)+ eymn(u2
S))+ · · · (4.2.11)

Using the expansions into the constitutive equation (4.1.4), the constitutive law becomes

1
ε2 χ

−2
Si jk(x,y, t)+

1
ε

χ
−1
Si jk(x,y, t)+χ

0
Si jk(x,y, t)+ εχ

1
Si jk(x,y, t)+ · · ·

=
1
ε2 bi jkhmn(

∂

∂yh
(eymn(u0

S)))

+
1
ε

bi jkhmn(
∂

∂xh
(eymn(u0

S))+
∂

∂yh
(exmn(u0

S))+
∂

∂yh
(eymn(u1

S)))

+bi jkhmn(
∂

∂xh
(exmn(u0

S))+
∂

∂xh
(eymn(u1

S))+
∂

∂yh
(exmn(u1

S))+
∂

∂yh
(eymn(u2

S)))

+εbi jkhmn(
∂

∂xh
(exmn(u1

S))+
∂

∂xh
(eymn(u2

S))+
∂

∂yh
(exmn(u2

S))+
∂

∂yh
(eymn(u3

S)))+ · · · (4.2.12)

In fluid ΦF , using the expansions (4.2.2) into the equations ∂vε
Fi

∂x j
and

∂vε
F j

∂xi
, we have

∂vε
Fi

∂x j
=

1
ε

∂v0
Fi

∂y j
+

∂v0
Fi

∂x j
+

∂v1
Fi

∂y j
+ ε(

∂v1
Fi

∂x j
+

∂v2
Fi

∂y j
)+ · · · (4.2.13)

∂vε
F j

∂xi
=

1
ε

∂v0
F j

∂yi
+

∂v0
F j

∂xi
+

∂v1
F j

∂yi
+ ε(

∂v1
F j

∂xi
+

∂v2
F j

∂yi
)+ · · · (4.2.14)
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Hence, equation (4.1.8) is written

Dε
i j =

1
ε

1
2
(

∂v0
Fi

∂y j
+

∂v0
F j

∂yi
)+

1
2
(

∂v0
Fi

∂x j
+

∂v0
F j

∂xi
+

∂v1
Fi

∂y j
+

∂v1
F j

∂yi
)+ · · · (4.2.15)

Using the expansions (4.2.15) and (4.2.3) into equation (4.1.7), we obtain

σ
ε
Fi j = 2µε

2Dε
i j− pε Ii j =

−p0Ii j + ε(µ(
∂v0

Fi
∂y j

+
∂v0

F j

∂yi
)− p1Ii j)+ ε

2(µ(
∂v0

Fi
∂x j

+
∂v0

F j

∂xi
+

∂v1
Fi

∂y j
+

∂v1
F j

∂yi
)− p2Ii j)+ · · · (4.2.16)

Using the expansion (4.2.4) into eaquation (4.2.16), it is as a constitutive law for the fluid and it is written

σ
0
Fi j + εσ

1
Fi j + ε

2
σ

2
Fi j + · · ·

= −p0Ii j + ε(µ(
∂v0

Fi
∂y j

+
∂v0

F j

∂yi
)− p1Ii j)+ ε

2(µ(
∂v0

Fi
∂x j

+
∂v0

F j

∂xi
+

∂v1
Fi

∂y j
+

∂v1
F j

∂yi
)− p2Ii j)+ · · · (4.2.17)

Using the expansion (4.2.4) into the balance equation (4.1.6) , we have

1
ε

∂σ0
Fi j

∂y j
+(

∂σ0
Fi j

∂x j
+

∂σ1
Fi j

∂y j
)+ ε(

∂σ1
Fi j

∂x j
+

∂σ2
Fi j

∂y j
)+ · · ·= 0 (4.2.18)

Using the expansion (4.2.2) into the incompressibility condition equation (4.1.9) , we get

1
ε

∂v0
Fi

∂yi
+

∂v0
Fi

∂xi
+

∂v1
Fi

∂yi
+ ε(

∂v1
Fi

∂xi
+

∂v2
Fi

∂yi
)+ · · ·= 0 (4.2.19)

On the interface Γ, using the expansion (4.2.6) into equation (4.1.10), we have

1
ε2 χ

−2
Si jknk +

1
ε

χ
−1
Si jknk +χ

0
Si jknk + εχ

1
Si jknk + · · ·= 0 (4.2.20)

On the interface Γ, using the expantions (4.2.9) and (4.2.5) into equation (4.1.11), we get

− 1
ε3 T−3

Si j N j−
1
ε2 T−2

Si j N j +
1
ε
(σ−1

Si j −T−1
Si j )N j +(σ0

Si j−T 0
Si j)N j + ε(σ1

Si j−T 1
Si j)N j + · · ·

= σ
0
Fi jN j + εσ

1
Fi jN j + · · · (4.2.21)

On the interface Γ, using the expantions (4.2.1) and (4.2.2) into equation (4.1.12), we obtain
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∂u0
si

∂ t
+ ε

∂u1
si

∂ t
+ ε

2 ∂u2
si

∂ t
+ · · ·= v0

Fi + εv1
Fi + ε

2v2
Fi + · · · (4.2.22)

The periodic Ω is presented in Fig. 4.2.1 inside the sample. Γ and ∂ΩS ∩ ∂Ω are boundaries of ΩS and Γ

and ∂ΩF ∩ ∂Ω are boundaries of ΩF . There are six normal unit vectors pointing outwards
−→
N1 (
−→
n1) on ∂Ω1+,

−
−→
N1 (−

−→
n1) on ∂Ω1−,

−→
N2 (
−→
n2) on ∂Ω2+, −

−→
N2 (−

−→
n2) on ∂Ω2−,

−→
N3 (
−→
n3) on ∂Ω3+ and −

−→
N3 (−

−→
n3) on ∂Ω3−.

Figure 4.2.1: A periodic Ω of the saturated porous matrix in the sample

We obtain at the lowest order a interface value problem for u0
S:

in solid ΩS,

∂T−3
Si j

∂y j
= 0 (4.2.23)

T−3
Si j =

∂ χ
−2
Si jk

∂yk
(4.2.24)

χ
−2
Si jk = bi jkhmn(

∂

∂yh
(eymn(u0

S))) (4.2.25)

interface condition on Γ,

χ
−2
Si jknk = 0 on Γ (4.2.26)
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T−3
Si j N j = 0 on Γ (4.2.27)

and the periodicity conditions on ∂ΩS∩∂Ω

The form is the same as in the empty porous medium. We get the solutions u0
S = u0

S(x, t) , χ
−2
Si jk = 0 and T−3

Si j = 0.

At the following order, we solve similar equations for u1
S which are now written:

in solid ΩS,

∂T−2
Si j

∂y j
= 0 (4.2.28)

T−2
Si j =

∂ χ
−1
Si jk

∂yk
(4.2.29)

χ
−1
Si jk = bi jkhmn

∂

∂yh
(eymn(u1

S)) (4.2.30)

on interface Γ,

χ
−1
Si jknk = 0 on Γ (4.2.31)

T−2
Si j N j = 0 on Γ (4.2.32)

and the periodicity conditions on ∂ΩS∩∂Ω

The form is the same as in the empty porous medium. We obtain solutions u1
S = u1

S(x, t) , χ
−1
Si jk = 0 and T−2

Si j = 0.

At the following order, we obtain the interface value problem for u2
S:

in solid ΩS,

∂T−1
Si j

∂y j
= 0 (4.2.33)

T−1
Si j =

∂ χ0
Si jk

∂yk
(4.2.34)

χ
0
Si jk = bi jkhmn(

∂

∂xh
(exmn(u0

S))+
∂

∂yh
(eymn(u2

S))) (4.2.35)
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on interface Γ,

χ
0
Si jknk = 0 on Γ (4.2.36)

T−1
Si j N j = 0 on Γ (4.2.37)

and the periodicity conditions on ∂ΩS∩∂Ω

The form is the same as in the empty porous medium and we also get the same solutions u0
S, χ0

Si jk and T−1
Si j as in

the empty porous mudia.

At the following order, we obtain the interface value problem for u3
F and p0:

in solid ΩS,

∂σ
−1
Si j

∂x j
−

∂T−1
Si j

∂x j
+

∂σ0
Si j

∂y j
−

∂T 0
Si j

∂y j
= 0 (4.2.38)

σ
0
Si j(x,y) = ai jmn(exmn(u0

S)+ eymn(u1
S)) (4.2.39)

in fluid ΩF ,

∂σ0
Fi j

∂y j
= 0 (4.2.40)

σ
0
Fi j =−p0Ii j (4.2.41)

on interface Γ,

χ
0
Si jknk = 0 on Γ (4.2.42)

(σ0
Si j−T 0

Si j)N j = σ
0
Fi jN j on Γ (4.2.43)

and the periodicity conditions on ∂ΩS∩∂Ω

and the periodicity conditions on ∂ΩF ∩∂Ω

Using u1
S = u1

S(x, t), we have

σ
0
Si j(x,y) = ai jmnexmn(u0

S) (4.2.44)
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and we obtain

p0 = p0(x, t) (4.2.45)

In fluid ΩF , we have the following order yields a interface value problem for v0. Here, we prove the Darcy law
and this work had done by Auriault (1983)[1].

∂σ0
Fi j

∂x j
+

∂σ1
Fi j

∂y j
= 0 (4.2.46)

σ
1
Fi j = µ(

∂v0
Fi

∂y j
+

∂v0
F j

∂yi
)− p1Ii j (4.2.47)

∂v0
Fi

∂yi
= 0 (4.2.48)

v0
Fi =

∂u0
Si

∂ t
on Γ (4.2.49)

By using the relative velocity ω0
i = v0

Fi−
∂u0

Si
∂ t and defining ε0

yi j =
1
2 (

∂ω0
i

∂y j
+

∂ω0
j

∂yi
), we have

∂σ0
Fi j

∂x j
+

∂σ1
Fi j

∂y j
= 0 (4.2.50)

σ
1
Fi j = 2µε

0
yi j− p1Ii j (4.2.51)

∂ω0
i

∂yi
= 0 (4.2.52)

ω
0
i = 0 on Γ (4.2.53)

The problem is unknown ω0
i and p1 and known p1 with linear equations (4.2.50) and (4.2.53). Thus, we enable to

look for p1 the following form

p1 = β
j(y)

∂ p0

∂x j
+ p1(x, t) (4.2.54)

and ω0
i is a linear vectorial function ∂ p0

∂x j
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ω
0
i = ki j

∂ p0

∂x j
(4.2.55)

and function ki j is solution of:

∂ki j

∂yi
= 0 (4.2.56)

And the function ki j satisfies the equation

ki j = 0 on Γ (4.2.57)

ω0
i , p1 are the solutions, in fact, unique.

The mean of equation (4.2.55) yields the Darcy law:

< ω
0
i >=|Ω |−1

ˆ
ΩF

v0
FidV− |Ω |−1

ˆ
ΩS

∂u0
Si

∂ t
dV =< v0

Fi >−φ
∂u0

Si
∂ t

=
1
|Ω |

ˆ
ΩF

ki jdV
∂ p0

∂x j
(4.2.58)

Finally, we obtain the intertace value problem for u4
F :

in solid ΩS,

∂σ0
Si j

∂x j
−

∂T 0
Si j

∂x j
+

∂σ1
Si j

∂y j
−

∂T 1
Si j

∂y j
= 0 (4.2.59)

T 0
Si j =

∂ χ0
Si jk

∂xk
+

∂ χ1
Si jk

∂yk
(4.2.60)

in fluid ΩF ,

∂σ0
Fi j

∂x j
+

∂σ1
Fi j

∂y j
= 0 (4.2.61)

σ
0
Fi j =−p0Ii j (4.2.62)

on interface Γ,

χ
1
Si jknk = 0 on Γ (4.2.63)

(σ1
Si j−T 1

Si j)N j = σ
1
Fi jN j on Γ (4.2.64)
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periodicity conditions on ∂ΩS∩∂Ω,

χ
1
Si jk@n1

k = Π
1
Si j, (σ1

Si j−T 1
Si j)@N1

j = F1
Si, on ∂ΩS∩∂Ω

1+ (4.2.65)

χ
1
Si jk@(−n1

k) =−Π
1
Si j, (σ1

Si j−T 1
Si j)@(−N1

j ) =−F1
Si, on ∂ΩS∩∂Ω

1− (4.2.66)

χ
1
Si jk@n2

k = Π
2
Si j, (σ1

Si j−T 1
Si j)@N2

j = F2
Si, on ∂ΩS∩∂Ω

2+ (4.2.67)

χ
1
Si jk@(−n2

k) =−Π
2
Si j, (σ1

Si j−T 1
Si j)@(−N2

j ) =−F2
Si, on ∂ΩS∩∂Ω

2− (4.2.68)

χ
1
Si jk@n3

k = Π
3
Si j, (σ1

Si j−T 1
Si j)@N3

j = F3
Si, on ∂ΩS∩∂Ω

3+ (4.2.69)

χ
1
Si jk@(−n3

k) =−Π
3
Si j, (σ1

Si j−T 1
Si j)@(−N3

j ) =−F3
Si, on ∂ΩS∩∂Ω

3− (4.2.70)

periodicity conditions on ∂ΩF ∩∂Ω,

σ
1
Fi j@N1

j = F1
Fi, on ∂ΩF ∩∂Ω

1+ (4.2.71)

σ
1
Fi j@(−N1

j ) =−F1
Fi, on ∂ΩF ∩∂Ω

1− (4.2.72)

σ
1
Fi j@N2

j = F2
Fi, on ∂ΩF ∩∂Ω

2+ (4.2.73)

σ
1
Fi j@(−N2

j ) =−F2
Fi, on ∂ΩF ∩∂Ω

2− (4.2.74)

σ
1
Fi j@N3

j = F3
Fi, on ∂ΩF ∩∂Ω

3+ (4.2.75)

σ
1
Fi j@(−N3

j ) =−F3
Fi, on ∂ΩF ∩∂Ω

3− (4.2.76)

In solid Ωs, by averaging the balance equation (4.2.59) in volume Ω with respect to y and using the divergence
theorem, we have
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<
∂σ0

Si j

∂x j
>−<

∂T 0
Si j

∂x j
>=− |Ω |−1

ˆ
ΩS

(
∂σ1

Si j

∂y j
−

∂T 1
Si j

∂y j
)dV =− |Ω |−1

ˆ
∂ΩS

(σ1
Si j−T 1

Si j)N jds

= − |Ω |−1
ˆ

∂ΩS∩∂Ω

(σ1
Si j−T 1

Si j)N jds− |Ω |−1
ˆ

Γ

(σ1
Si j−T 1

Si j)N jds (4.2.77)

Using periodicity conditions on ∂ΩS∩∂Ω, we get

<
∂σ0

Si j

∂x j
>−<

∂T 0
Si j

∂x j
>=− |Ω |−1

ˆ
Γ

(σ1
Si j−T 1

Si j)N jds (4.2.78)

By averaging the balance equation (4.2.60) in volume Ω with respect to y and using the divergence theorem, we
have

< T 0
Si j >=<

∂ χ0
Si jk

∂xk
>+ |Ω |−1

ˆ
ΩS

∂ χ1
Si jk

∂yk
dV =<

∂ χ0
Si jk

∂xk
>+ |Ω |−1

ˆ
∂ΩS

χ
1
Si jknkds

=<
∂ χ0

Si jk

∂xk
>+ |Ω |−1

ˆ
∂ΩS∩∂Ω

χ
1
Si jknkds+ |Ω |−1

ˆ
Γ

χ
1
Si jknkds (4.2.79)

By using the same periodic conditions on ∂ΩS∩∂Ω and χ1
Si jknk = 0 on Γ and . We obtain

< T 0
Si j >=<

∂ χ0
Si jk

∂xk
> (4.2.80)

In fluid ΩF , by averaging the balance equation (4.2.61) in volume Ω with respect to y and using the divergence
theorem, we get

<
∂σ0

Fi j

∂x j
>=− |Ω |−1

ˆ
ΩF

∂σ1
Fi j

∂y j
dV =− |Ω |−1

ˆ
∂ΩF

σ
1
Fi jN jds

=− |Ω |−1
ˆ

∂ΩF∩∂Ω

σ
1
Fi jN jds− |Ω |−1

ˆ
Γ

σ
1
Fi jN jds (4.2.81)

Using the same periodic conditions on ∂ΩF ∩∂Ω, we obtain

<
∂σ0

Fi j

∂x j
>=− |Ω |−1

ˆ
Γ

σ
1
Fi jN jds (4.2.82)

(4.2.78)+(4.2.82) and using the interface condition equation (4.2.64), we obtain
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<
∂σ0

Si j

∂x j
>−<

∂T 0
Si j

∂x j
>+<

∂σ0
Fi j

∂x j
>= 0 (4.2.83)

Let us define the total stress σ0 as

σ
0
i j =

σ0
Si j in ΩS

σ0
Fi j in ΩF

(4.2.84)

Using the total stress and exchanging order of integration and derivative, we get

∂ < σ0
i j >

∂x j
−

∂ < T 0
Si j >

∂x j
= 0 (4.2.85)

where

< σ
0
i j >=|Ω |−1

ˆ
ΩS

σ
0
Si jdV+ |Ω |−1

ˆ
ΩF

σ
0
Fi jdV =< ai jmn > exmn(u0

S)−φ p0Ii j (4.2.86)

A second compatibility condition is obtained from the fliud volume balance at order ε0

∂v0
Fi

∂xi
+

∂v1
Fi

∂yi
= 0 (4.2.87)

By integrating over Ω with respect to y, and using the divergence theorem and the periodicity of v1, we have

<
∂v0

Fi
∂xi

>=− |Ω |−1
ˆ

ΩF

∂v1
Fi

∂yi
dv =− |Ω |−1

ˆ
∂ΩF

v1
FiNids

=− |Ω |−1
ˆ

∂ΩF∩∂Ω

v1
FiNids− |Ω |−1

ˆ
Γ

v1
FiNids =− |Ω |−1

ˆ
Γ

v1
FiNids (4.2.88)

By using the displacement continuity condition on Γ and u1
S = u1

S(x, t), we get

<
∂v0

Fi
∂xi

>=− |Ω |−1
ˆ

Γ

v1
FiNids =− |Ω |−1

ˆ
Γ

∂u1
Si

∂ t
Nids =−

∂u1
Si

∂ t
|Ω |−1

ˆ
Γ

Nids (4.2.89)

We look for Λi is a constant.

∂Λi

∂yi
= 0 (4.2.90)

0 =

ˆ
ΩF

∂Λi

∂yi
dv =

ˆ
∂ΩF

ΛiNids =
ˆ

∂ΩF∩∂Ω

ΛiNids+
ˆ

Γ

ΛiNids = Λi

ˆ
Γ

Nids (4.2.91)
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Hence, we have
´

Γ
Nids = 0.

<
∂v0

Fi
∂xi

>=
∂ < v0

Fi >

∂xi
= 0 (4.2.92)

We obtain macroscpic second grade modelling of saturated porous matrix by homogenization

∂ < σ0
i j >

∂x j
−

∂ < T 0
Si j >

∂x j
= 0 (4.2.93)

< T 0
Si j >=

∂ < χ0
Si jk >

∂xk
(4.2.94)

< χ
0
Si jk >=< bi jkhmn +bi jkqrs

∂

∂yq
(eyrs(ξ

hmn))>
∂

∂xh
(exmn(u0

S)) (4.2.95)

< σ
0
i j >=< ai jmn > exmn(u0

S)−φ p0Ii j (4.2.96)

∂ < v0
Fi >

∂xi
= 0 (4.2.97)

< v0
Fi >−φ

∂u0
Si

∂ t
=

1
|Ω |

ˆ
ΩF

ki jdV
∂ p0

∂x j
(4.2.98)
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Chapter 5

Conclusions

This master project mainly focused on finding a macroscopic second grade model of a one dimensional periodic
medium, an empty porous matrix and a saturated porous matrix using the asymptotic homogenization method. The
results of this method present similarities with the original analysis performed with partial differential equations.
The main difference that was observed in this work, is the fact that no boundary conditions applied in the sample.

Moreover, the double scale asymptotic expansion method was chosen as the appropriate method to study hetero-
geneous periodic materials and the model of homogenization method is equivalent model without the boundary
condition of solid or interface condition between the solid and fluid.

By using the asymptotic homogenization method, second grade models could be determined for saturtated porous
media.

Finally, the subject of this project has been studied to a certain extent, due to the short period that was dedicate for
it. However, some perspectives for future work would include the application of these models to alternative, real
materials. Also the numerical solution of the same models under loading would also be interesting to study future.
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