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Fluid dynamical systems

Navier–Stokes equations

Harris et al. 2003

Fluid passes a cylinder

Huang. 2021

Euler equations

Cloud simulation

Shallow water equations

Bonev et al. 2018

Tohoku tsunami event

Different types of PDEs

A general governing PDE

where 𝑥 and 𝑡 are space and time coordinates and 𝑞(𝑡, 𝑥) is the vector of modeled variable fields at one place and time. 



3

Finite difference method, finite element method, ...

Solving the fluid PDE system

Traditional approaches  

Machine learning (ML) approaches 

Property: Expensive computation cost (e.g. small spatial and temporal resolutions and implicit scheme)      

Supervised learning, unsupervised learning

In this work

Property: Efficient

This combines ML with numerical solvers. 

We construct hybrid PDE solvers using group equivariant neural networks.
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Unsupervised training of PDE solvers

Numerical approach 

An implicit method needs to be used for iteratively solving the system. For linear systems this is:

ML method

Physics-derived, unsupervised approach

ML for calculating   

Numerical solver for calculating  𝐴 and 

Here is a physical constraint for loss (unsupervised learning). We don't need simulation data for training.
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Group equivariant convolutional networks

P4 equivariant convolutional networks

Group reflection-equivariant 1D convolutions neural networks (GR-CNN)

Veeling et al. 2018

𝑓 (𝑔(.)) = 𝑔( 𝑓 (.)) 

In the original paper, it has p4 and p4m. (T. Cohen & Welling, 2016) 

The symmetry constraint networks show powerful capabilities for image classification and segmentation. 

These networks for fluid dynamics remains mostly unclear. 

We hope this symmetry constraint can help to learn the complex fluid dynamical patten in long-term. 



10

One-dimensional shallow water equations

Boundary conditions

Random initial conditions for training and testing 

“Gaussian Bell”

The surface elevation: 

The velocity:
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Group equivariance for mixed scalar-vector inputs

Change GR-CNN
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Hybrid methods

Wandel et al., 2020

Hybrid PDE solvers using group equivariant neural networks
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GR-CNN accurately solves the SWE

Normalized root means square error.

Pearson’s correlation coefficient for 𝜁.
Time-averaged normalized root mean square error.
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GR-CNN achieves accurate solution in 

different network size. 

Different network size

Loss values for both GR-CNN and CNN 

are similar during the training. 

GR-CNN solver is more likely to converge 

to the right answer
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<
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Reason: unsupervised learning trains

on single time steps

Similar loss value, but GR-CNN can improve 

the prediction. 



Generalization Capabilities after Training: a triangular initial condition
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Generalization Capabilities after Training: multi-Gaussian initial condition
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Global mass, momentum, and energy

GR-CNN solver has high accurate global mass, momentum, and energy distributions.
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Conclusion

We construct equivariant convolutional networks with mixed scalar-vector inputs

for solving PDEs.

Equivariant networks strongly improve the long-term accuracy and stability in

unsupervised learning tasks.

Equivariant networks improve generalization to new initial conditions, and

suppress error accumulation in global momentum and energy.
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Thank you for your attention  


