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Neural PDE Integration

. O’UJ 5 space and time p
Ageneral PDE: —— = F(t,z,w,Vw,V*w,...) z2€QCR
ot t € [0,T]

’w(t, x) € R™, initial and boundary conditions: Blw](t,xz) = 0,Vx € 0S2

An update operator: w(t + At, ) — g[w(t, )]

Traditional: Numerical solver

Recent: Trained neural networks (called neural PDE integration)
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Neural PDE Integration

Why is neural PDE integration:

Makes computing fast: coarse resolution and multiple time steps
Especially important for climate and ocean systems

Challenges of neural solver :

to obtain an accurate long-stable rollout
generalization outside of trained data

Our scientific question:

Could we benefit from the physical and symmetry
constraints for accurate long-stable rollout?
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Symmetry- and Physics-Constrained Neural Integrators

Rotation Equivariant CNNs

Inpmt

[.Em Eﬁ F- New fast versions

Z2-Pi conv A 1 J P4&-Plconv A Py-z2
" . B :, R avg. pool ‘
¢ / L y "'E \ | :
v N , = R ) ] = , ¥
Hotuted imput et ’ : ' E"" / \ Pocled autpt

m m ﬂ -q Jenner et al. 2022

Cohen et al. 2016
Veeling et al. 2018

t(g(x)) = g(t(x)) Cesa et al. 2022

f() : transformations g() . networks
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Symmetry- and Physics-Constrained Neural Integrators

Symmetries of incompressible Navier—Stokes equations
du

VP 9 F.p " 'L Saelu vl Selev) Y8 nv) FUS I,
+(u-VYu=——+4 uV°u+ f; Veu=10 .
L P S o "
* ]

C-grid staggering

- EE=EE
Identical
aay
Solu, o) S, (1, ) RS, ¢ I -3, 0w )
numerical
- B

Symmetries of INS . . —_— - . T
- & =S ~ i
flio - Su(—F(u), F(v)) = —F(S,,(u t))
P Su(=F(u), F(v)) = F(S,(u,v))
. | Su(R(v),—R(u)) = R(S,(u,v))
"’“‘“"“'{ Sy(R(v), —R(u)) = R(~Sy(u,v)) .-—’..—’.-
. ation | SuURLE(),~R(=F() = RUF(S, (10)) T
ﬂ'p“"’t‘"""“'{ S, (R(F(v)), —R(—F(u))) = —R(~F(Su(u,v) .._,.-




Symmetry- and Physics-Constrained Neural Integrators

We build group equivariant (p4, p4m) input layers for INS

According to the symmetries of INS, we create an input layer for p4.

C'iiin—]‘ C;;r -1
1 . u E : v
yjaov"' T Z (Wjaia'a' *?L?’”) + (W]~715 *v7’37) + bJ’
1=0 1=0
C}i‘n_l C?n_l
1 - 90° v 90° u
yj’l"’. o Z (RTO( (WJ"I*s)*UZ”) + Z <—Rr0t (WJ~7"5)*U7'73) +b]’
1=0 1=0
¢y, —1 in—1

yj]:’2"" - Z (_Rl}oglo (quf?,,,) *ui"a') + Z <_ 1OEEOO(W;:Z,,) *U’i,-,') + b]’




Symmetry- and Physics-Constrained Neural Integrators

We build vector output layers on C-grid

P

a v
A

p4d U;4+0.5,57 = Pi+1,5,0 — Pi,j,1

Vi,j4+0.5 =— Pi,j+1,2 — Pi,5,3

4m %i40.5,5 = Pi+1,5,1 — Pi,j,3 T Pi+1,5,5 — Pi,j,7
P
Vi.54+0.5 = Pij+1,2 — Pi.j,4 T Pi j+1,6 — DPi 5,0




Symmetry- and Physics-Constrained Neural Integrators
Physical constraints embedded into networks

Momentum conservation

u't! = u! + du — mean(du)

v+l = vt + dv — mean(dv)

Helmholtz decomposition ¢ =Vqg+V x a

Learn scalar potential t+1 _ ot _ da
U — By
t+1 t da
O = ke 28 Wandel et al. 2020
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Symmetry- and Physics-Constrained Neural Integrators

The symmetry- and physics-constrained neural integrator for INS

Input data —» Input layer — Hidden layers ., Outputlayer ., Output data

t d erid t filt regular representation equivariance staveered orid
staggered gri equivariant filters g coIIocgted grld phy5|cal constraints 88 5

3 9
1 L
ll

u. v » u

l/u

M‘ Physical constramts Symmetry constraints
1

[, ml]—[ut s B S s A

R(v). ~R(u)| f m+pil ﬁ,[u‘.z"]—ﬂ},[ﬁ‘“.v +1]
as input ‘___;. [%1 %1] - 96(@, h)
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Experiments

it 1. . Ju . _Vp 5
((..)—{ = —Cuﬁulul —gV(+a, Vi 5 T8 V)u= Y +uViu+ f
a¢ V-u=0
— = -V (hu
5t (hai)
Table 1: Geometric and physical constraints  Table 2: Geometric and physical constraints for
for SWEs INS
Symmetries Symmetries
Conservation laws &1 B HIn AN Conservation laws BN B AN
None 2 pl/® pa/? pam/@ None o pl/® pa/® pam/®
Mass m pl/m p4/m  pam/m Momentum p@ pl/pii  p4/pi  pam/pi

Mass/moment. m+pé pl/m+pti pa/m+pi padm/m+pi
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PAm/m outperforms other networks for SWE

Rollouts ™
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P4mlm+p" achieves along rollout for decaying turbulence
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Generalization beyond the training distributions

2 0.2h 9 o.ss 12.6s  59.5s  82.9s _ 99.7s
- -~
£ Z
- -
° T
5 & E
2 2
o o

pl/@

pl/®
&

.

pam/m+pu

c] =10 =10 {5 = reference
= x i
10" =10 —:n::‘mﬁ
5 107 = —pL/O+E
8 .. & 108+ —PA/D
§ 10"4 3 —
> 10 @ ““N pAmiD

'. /e
z 107]_99.7s 5 9975 N[—rime;
= 10" 10/ s 10" 1() P/ 41
t(h) 50 = Wavenumber k W Wavenumber i




More generalizations for SWEs

Training is one square as initial condition.

ground
truth
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Stability of symmetry-and physics-constrained model

Using incompressible Navier—Stokes equations for test

Different network size Different data size
T al ! b| [T q ! d|[mre,.
L | | = ‘ L | l = ‘ ‘ p1l/0
%) I % ‘ l ‘ | N l & x ‘ t =12.6s
= ‘ al = = | = ‘ ‘ .p4m/m+pfi
- = i 22 = l t:r:./l::+"
Z“ Z() ?::_ll.&spu
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Network size Network size Training data size Training data size
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Conclusion

we present a novel architectural component that simultaneously enforces hard
constraints on symmetries and conservation laws for neural PDE integrators

we find that greater enhancements are brought about by symmetry constraints,
but these do not make conservation laws redundant.

Maximally constrained networks provided the best match to reference
simulations, both for individual initial conditions and on a statistical level.
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Thank you for your attention




Architecture

Local spatial information
“‘ g ||| modern U-Net architectures
""I ” I"" Gupta et al., 2022;
Hp et al., 2020; |
Il —— W e,

Global spatial information
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