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Abstract

Neural PDE surrogates can improve the cost-
accuracy tradeoff of classical solvers, but often
generalize poorly to new initial conditions and
accumulate errors over time. Physical and sym-
metry constraints have shown promise in closing
this performance gap, but existing techniques for
imposing these inductive biases are incompati-
ble with the staggered grids commonly used in
computational fluid dynamics. Here we intro-
duce novel input and output layers that respect
physical laws and symmetries on the staggered
grids, and for the first time systematically inves-
tigate how these constraints, individually and in
combination, affect the accuracy of PDE surro-
gates. We focus on two challenging problems:
shallow water equations with closed boundaries
and decaying incompressible turbulence. Com-
pared to strong baselines, symmetries and physi-
cal constraints consistently improve performance
across tasks, architectures, autoregressive predic-
tion steps, accuracy measures, and network sizes.
Symmetries are more effective than physical con-
straints, but surrogates with both performed best,
even compared to baselines with data augmenta-
tion or pushforward training, while themselves
benefiting from the pushforward trick. Doubly-
constrained surrogates also generalize better to
initial conditions and durations beyond the range
of the training data, and more accurately predict
real-world ocean currents.
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1. Introduction
Recently, neural networks have shown promising results
in predicting the time evolution of PDE systems, often
achieving cost-accuracy tradeoffs that outperform traditional
numerical methods (Li et al., 2021; Gupta & Brandstet-
ter, 2023; Stachenfeld et al., 2021; Takamoto et al., 2022;
Long et al., 2019; Um et al., 2020; Kochkov et al., 2021).
However, obtaining accurate and stable autoregressive ‘roll-
outs’ over long durations remains notoriously difficult. Sev-
eral techniques have been proposed to address this prob-
lem, including physical constraints, symmetry equivariance,
time-unrolled training, specialized architectures, data aug-
mentation, addition of input noise and generative modeling
(Sanchez-Gonzalez et al., 2020; Lippe et al., 2024; Stachen-
feld et al., 2021; Kohl et al., 2024; Brandstetter et al., 2022b;
Fanaskov et al., 2023; Bergamin et al., 2024; Sun et al.,
2023; Hsieh et al., 2019; Tran et al., 2023; Li et al., 2023;
Bonev et al., 2023). Nonetheless, the relative effectiveness
of these strategies remains largely ambiguous, and transpar-
ent, systematic comparisons remain elusive.

Here, we systematically investigate the utility of symme-
try constraints and physical conservation laws, alone and
in combination. While both have proven useful for some
tasks and architectures, to date there have been practically
no systematic evaluations of their combination. Given the
deep connections between conservation laws and PDE sym-
metries in physics (Noether, 1918), it is not clear a priori
whether these constraints would prove redundant, or com-
bine usefully for training PDE surrogates. Across multiple
tasks, accuracy measures, architectures, training techniques,
and scenarios, we show a clear, reproducible and robust
benefit from these constraints for long rollout accuracy and
generalization performance, and that they combine syner-
gistically. To make them broadly applicable, we introduce
novel input and output layers that extend these inductive
biases to staggered grids for the first time.1

1Code is available at https://github.com/m-dml/
double-constraint-pde-surrogates.
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Figure 1. Symmetry- and physics-constrained neural surrogate for incompressible flow on a staggered grid. A rotation-equivariant input
layer maps velocities onto a non-staggered regular representation, hidden layers employ steerable convolutions and the equivariant output
layer enforces conservation laws on mass and momentum (M + ρu⃗) as it maps to staggered velocities.

2. Background and Related Work
Neural PDE surrogates We aim to train neural networks
to predict the time evolution of a system of PDEs. We
consider time-dependent variable fields w(t, x) ∈ Rm, for
x ∈ Ω ⊂ Rd, t ∈ [0, T ] and

∂w

∂t
= F(t,x,w,∇w,∇2w, . . .) (1)

Starting from initial conditions (ICs) w(0,x) and boundary
conditions (BCs) B[w](t,x) = 0,∀x ∈ ∂Ω, the solution
can be advanced with a fixed time step:

w(t+∆t, ·) = G[w(t, ·)], (2)

where G is an update operator. To provide training data
and evaluate performance we use a reference solution gener-
ated by a numerical solver with space- and time-discretized
variable fields.

Recent studies have trained neural surrogates to approximate
G (Greenfeld et al., 2019; Gupta & Brandstetter, 2023; List
et al., 2024; Lippe et al., 2024; Li et al., 2021; Tripura &
Chakraborty, 2023; Raonic et al., 2024). The neural network
can also be combined with a numerical solver, in so-called
‘hybrid methods’ (Bar-Sinai et al., 2019; Tompson et al.,
2017; Kochkov et al., 2021; Bukka et al., 2021; Long et al.,
2019).

Training neural surrogates to remain stable and accurate
over long autoregressive rollouts remains challenging. Sev-
eral techniques have been proposed, including physical con-
straints, symmetry constraints, training with input noise,
unrolled training and generative modeling. However, a clear
consensus on the relative effectiveness of these approaches
remains elusive, and their application to new tasks is not
always straightforward.

Symmetry equivariance Suppose f : w → z is an oper-
ator mapping between two multidimensional variable fields
w(x), z(x) defined on Ω ⊂ Rd. Then for a group G of
invertible transformations on Rd, f is equivariant if it com-
mutes with the actions of G on w and z. Concretely, there

should exist transformations Tg, T ′
g operating on w, z re-

spectively, such that

[f ◦ Tgw](x) = [T ′
g ◦ fw](x), ∀g ∈ G,x ∈ Ω (3)

That is, transforming the inputs of f will transform its out-
puts correspondingly. When w is a scalar field, T and T ′

simply resample w at coordinates defined by the action of
G on Rd:

[T scalar
g w](x) = w(g−1x) (4)

Other field types transform in more complex ways. For
example, the action of a 90◦ rotation R on a 2D vector field
both resamples the field and rotates each vector:

[T vector
R (w1, w2)](x) = (−w2(R

−1x), w1(R
−1x)) (5)

The range of possible actions is described by G’s group
representations. Efficient, full-featured software packages
exist for equivariant convolutions (Cesa et al., 2022) and self-
attention (Romero & Cordonnier, 2021), and have proven
useful in image classification (Chidester et al., 2019) and
segmentation (Veeling et al., 2018), and to improve neural
PDE surrogates (Wang et al., 2021; Helwig et al., 2023;
Smets et al., 2023; Huang & Greenberg, 2023; Ruhe et al.,
2024). Numerical integration methods can also benefit from
maintaining PDE symmetries (Rebelo & Valiquette, 2013).
We restrict ourselves to the discrete symmetry groups that
hold precisely on regular grids, though some approaches
have been proposed for the continuous symmetries that
hold on the original PDEs (Weiler & Cesa, 2019; Thomas
et al., 2018; Cesa et al., 2022; Knigge et al., 2024; Horie &
Mitsume, 2022; Brandstetter et al., 2022a; Gasteiger et al.,
2020; Lino et al., 2022; Toshev et al., 2023).

Non-equivariant architectures can also be trained using data
augmentation, with g ∈ G randomly sampled to transform
input-target pairs during training (Brandstetter et al., 2022b).
But while equivariant surrogates maintain symmetries pre-
cisely for any training or testing data, data augmentation
results in imprecise equivariance that may fail to generalize
beyond the training data.
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Figure 2. Action of rotation-equivariant input layer on staggered velocity fields (top left). The filter bank is transformed by each g ∈ G to
compute a G-indexed regular representation y. Rotation-transforming inputs (bottom left) yields permuted, rotated output channels.

Staggered grids Fluid dynamical systems are often simu-
lated using staggered grids (Fig. 8), in which variables such
as pressure, density, divergence or velocity along each axis
are represented at different locations. This approach can
avoid grid-scale numerical artifacts in numerical integration,
and is widely used in fluid dynamics (Holl & Thuerey, 2024;
Kochkov et al., 2021; Jasak, 2009; Stone et al., 2020) as well
as atmospheric (Jungclaus et al., 2022; De Pondeca et al.,
2011; Korn et al., 2022), and ocean models (Korn et al.,
2022; Madec et al., 2023a;b). Staggered grids are common
in in finite volume solvers, which generally respect conser-
vation laws and offer other numerical advantages (Ferziger
et al., 2019). However, current software implementations
of equivariant network layers (Cesa et al., 2022; Romero
& Cordonnier, 2021) cannot be applied to PDE variable
fields on equivariant grids. This is because they assume that
variables fields are all located at the same points, allowing
the action of symmetries on these fields to be broken into
two steps: a resampling step x → g−1x carried out on the
grid itself, and a transformation step w → ρg(w) carried
out on PDE field variables w ∈ Rm at each point single
grid point. This leads to overall transformations w → Tgw,
such that [Tgw](x) = ρg(w(g

−1x)). This is a valid assump-
tion for PDEs on continuous spatial domains (eq. 5) or for
collocated grids (eq. 1 of Weiler & Cesa 2019). But for stag-
gered grids, the PDE fields are not represented as a vector
of values w(x) at each grid point x. Instead, each field is
defined at different locations, which may be grid cell cen-
ters, interfaces or vertices. Thus, the spatial transformation
of the grid and the transformation of local field values can-
not be disentangled. Applying existing equivariant network
layers to staggered PDE fields therefore breaks symmetry
constraints.

Unfortunately, existing equivariant network layers (Cesa
et al., 2022; Romero & Cordonnier, 2021) assume Tg can
be described by a resampling operation followed by an
independent transformation at each grid point as in Equation
5, but on staggered grids rotation and reflection do not take
this form.

Physical constraints Neural surrogates have frequently
been applied to physical systems, many of which contain
known conservation laws. To improve accuracy, stability,

and generalization capabilities, these laws can be imposed
through additional loss terms (Read et al., 2019; Wang et al.,
2021; Stachenfeld et al., 2021; Sorourifar et al., 2023). Tak-
ing the strategy of physics-derived loss terms to its ulti-
mate limit, one arrives at unsupervised training on PDE-
derived losses for discretized (Wandel et al., 2021; Michelis
& Katzschmann, 2022) or continuous solutions (Raissi et al.,
2019). Alternatively, one can reparameterize network out-
puts to respect hard constraints (Mohan et al., 2020; Beucler
et al., 2021; Chalapathi et al., 2024; Cranmer et al., 2020;
Greydanus et al., 2019). Here we focus on hard-constrained
supervised learning with space- and time-discretized grids,
which has proven more competitive in larger and more com-
plex PDE systems (Takamoto et al., 2022).

3. Symmetry- and Physics-Constrained Neural
Surrogates

In this work, we assess the separate and combined bene-
fits of symmetries and conservation laws for neural PDE
surrogates. To achieve this, we construct equivariant input
layers that support staggered grids (Fig. 8), as well as output
layers enforcing both equivariance and conservation laws.
When comparing to non-equivariant networks, we replace
equivariant convolutions using standard convolutions with
the same size and padding options (Appendix B), adjusting
channel width to match total parameter counts.

Fig. 1 demonstrates our overall framework for constructing
equivariant, conservative neural surrogates. As an illustra-
tive example, we show the incompressible Navier Stokes
equations, with equivariance in translation and rotation,
momentum conservation and a divergence-free condition
(equivalent to mass conservation). Input data defined on
staggered grids are mapped through novel equivariant input
layers to a set of convolutional output channels defined at
grid cell centers. Each internal activations consist of regu-
lar representations: groups of channels indexed by G,2 on
which G acts by transforming each spatial field and by per-
muting the channels according to the group action (Cohen &
Welling, 2016; Cesa et al., 2022). Essentially, regular repre-
sentations are real-valued functions of the discrete symmetry

2Technically, by the non-translational subgroup of G.
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group G. This formulation allows us to use the preexist-
ing library escnn (Cesa et al., 2022) for all internal linear
transformations between hidden layers. Finally, we employ
novel output layers to map the regular representation back
to the staggered grid while enforcing conservation laws as
hard constraints.

Input layers We consider input data on staggered
Arakawa C-grids (Fig. 8b) with square cells, and variable
fields defined at cell centers (typically scalar fields such as
pressure, surface height, or divergence), at cell interface
midpoints (such as velocity components), and at vertices
(such as vector potentials). For a n × n 2D grid of cells,
there is a (n+ 1)× n grid of interfaces in the x1 direction
(along rows, including boundaries), and a n× (n+ 1) grid
of interfaces in the x2 direction (along columns).

We designed convolutional input layers to take scalar inputs
at cell centers and/or vector fields with components defined
at interfaces. Inputs at interfaces are first processed with
a bank of convolutional filters, each of even size along the
coordinate axis orthogonal to a single set of interfaces, and
of odd size along all other axes (Fig. 2, left). This filter
bank is collectively transformed according to each element
of the symmetry group G, while being applied to the input
data. Note that, similar to the transformation of vector fields
(Eq. 5), these filter banks undergo collective transformation
by rotations and reflections, not only through resampling,
but also through permutation and sign flips (Fig. 2, right).
When we rotation-transform input vector fields (Eq. 5), this
has the effect of permuting and rotating the outputs of our
input layer, as required for an equivariant mapping onto
a regular representation (Fig. 2, magenta arrows), which
the proof can be found in the Appendix C.2. Inputs at cell
centers are processed with separate, standard equivariant
convolution layers. Convolutions for both interface and
center-defined input variables produce regular representa-
tion outputs, which are then combined to compute the total
input to the network’s first hidden layer. We provide imple-
mentations of 2D input layers for translation-rotation (p4)
and translation-rotation-reflection (p4m). Further details on
input layers can be found in the Appendix C.

Output layers We designed convolutional output layers
mapping from regular representations to staggered C-grid
variables (Fig. 8). As for the input layers, we use separate
convolutional filter banks for cell- and interface-centered
variables, but now additionally support vertex-centered
scalar outputs for the purpose of enforcing physical con-
straints (see below). Scalar face-centered outputs are com-
puted using pooling layers over a regular representation
(Cohen & Welling, 2016). Vector field outputs at each cell
interface are computed as linear combinations of regular
representations at the two surrounding cell centers, with

constraints imposed on the weights to satisfy the equivari-
ant transformation of vector fields (Eq. 5, details of output
layers and their proofs in D). Vertex-centered scalar outputs
are computed using even-sized square filters, followed by
pooling layers operating over G-indexed channels.

Conservation laws We impose 3 types of conservation
laws as hard constraints. For scalar quantities such as fluid
surface height ζ, we subtract the global mean of ζt+1 −
ζt at each time step. For vector fields, we subtract the
mean of each velocity component. As mass conservation
in incompressible flows is equivalent to divergence-free
velocity fields, we impose this by learning a vector potential
a defined at grid vertices, and compute velocities at grid
cell interfaces as the curl ∇ × a to satisfy both mass and
momentum conservation (Wandel et al., 2021). Further
details and discussion of alternative approaches are found
in appendix F.

None

Mass

Conservation laws

Symmetries

p1/��

�

p1/MM p4/M p4m/M

p4/� p4m/�

Symmetries

Conservation laws

Momentum

None p1/�

Mass/momentum

p4/� p4m/�

Table 1. Geometric and physical constraints for SWEs

Table 2. Geometric  and  physical  constraints  for INS

p1/

M+ p1/M+ p4/M+

p4/ p4m/

p4m/M+

3.1. Surrogate Architectures

To measure the efficacy of symmetries and physical con-
straints we chose a flexible base architecture with efficient
training and inference that has produced highly competi-
tive results: the “modern U-net” (Gupta & Brandstetter,
2023), which modifies the original U-net (Ronneberger
et al., 2015) for improved performance as a PDE surrogate
(Appendix H). This architecture has shown strong results
in (Kohl et al., 2024), and a similar version performed well
in (Lippe et al., 2024). We used it without self-attention
layers, which did not significantly affect our results. When
constructing symmetry-respecting versions of the U-net, we
confirmed equivariance held to numerical precision, but
only if input/output layers for staggered grids were used
(Appendix E).

In some experiments, we also compared to additional base-
lines. The Dilated ResNet architecture (drnet) has has per-
formed well as a PDE surrogate (Stachenfeld et al., 2021),
and we considered constrained and unconstrained versions.
The rotation-equivariant U-net of Wang et al., 2021 was also
enforces hard symmetry constraints, but was not intended
for staggered grids. Fourier neural operators (FNOs) com-
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bine local operations with filtering in frequency space (Li
et al., 2021), and we use unconstrained versions.

3.2. Training

We trained neural surrogates using a MSE loss L =
1
N

∥∥ŵt+1 −wt+1
∥∥2
2
, where N is the number of discretized

PDE field values. All data fields were normalized by sub-
tracting the mean and dividing by the standard deviation,
with common values for both components of vector fields.
We trained on 2 A100 GPUs with the ADAM optimizer
(Kingma, 2014), batch size 32 and initial learning rate 1e-4.
We employed early stopping when validation loss did not
reduce for 10 epochs, and accepted network weights with
the best validation loss throughout the training process.
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Figure 3. p4m/M (symmetry+physics constraints) outperforms
other networks with similar parameter counts on SWEs. (a) Refer-
ence surface disturbance ζ with predictions from p1/∅ and p4m/M.
(b-c) Accuracy over 50h rollouts, with standard error of the mean
over 20 ICs. (d) Training loss over iterations. (e) Histogram of
EtNRMSE over 20 ICs. (f) Violation of mass conservation for
all methods (black line shows reference simulation). (g) High
correlation times for each model.

4. PDE Systems
We considered two challenging 2D fluid dynamic PDEs,
with the same staggered grid and symmetries but different
variables, BCs/ICs, reference solvers and conservation laws.
Full sets of constraints for each system and names for each
combination appear in Tables (1-2), while PDE parameters
and further numerical details appear in Tables (6-7).

4.1. Closed Shallow Water System

The shallow water equations (SWEs) are widely used to
describe a quasi-static motion in a homogeneous incom-
pressible fluid with a free surface. We consider nonlinear
SWEs in momentum- and mass conservative form on the
domain Ω with ‘closed’ Dirichlet BCs (Song et al., 2018):

∂u

∂t
= −CD

1

h
u|u| − g∇ζ + ah∇2u (6)

∂ζ

∂t
= −∇ · (hu) (7)

u = 0, on ∂Ω (8)

where ζ is fluid surface elevation, u = [u, v] is the velocity
field, d and h respectively represent the undisturbed- and
disturbed fluid depth (so that h = d+ ζ) and ∂Ω is a closed
domain boundary. ah is the horizontal turbulent momentum
exchange coefficient, CD is the bottom drag coefficient and
g is gravitational acceleration. SWEs simulations exhibit
travelling waves that reflect from domain boundaries, tem-
porarily increasing in height as they self-collide. This sys-
tem is more challenging than previous SWE tasks with open
(Takamoto et al., 2022) or periodic BCs (Gupta & Brandstet-
ter, 2023), due to the combination of self-interfering wave
patterns, incompressibility and altered dynamics at pixels
near the domain boundaries.

Numerical reference solution Closed BCs and incom-
pressibility lead to stiff dynamics, so explicit solvers are
inefficient. Instead, we generate data using a semi-implicit
scheme (Backhaus, 1983) that represents ζ and [u, v] on a
staggered Arakawa C-grid (Arakawa, 1977) and solves a
sparse linear system at each time step ∆t = 300s.

Grids are 100× 100, 100× 99, and 99× 100 respectively
for ζ, u, and v. We trained on 50 simulations spanning
50 h (600 time steps) each. ICs were ζ = 0 except for a
0.1 m high square-shaped elevation, and [u, v] = 0. The
square had side length uniformly distributed from 2-28 grid
cells and random position. The solver was implemented
in Fortran and required 67 s/IC on a compute node with
48 CPUs. Testing and validation data included 10 simu-
lations. Surrogates used the solver’s time step. Since the
time evolution of this SWE systems depends on the location
of boundaries, we provide a binary boundary mask to the
network as an additional input field with scalar values de-
fined at grid cell centers. We note that this binary mask is
invariant to rotations and reflections.

Symmetries and conservation laws The shallow water
system in Eqs. 7-8 is equivariant to rotations and reflections.
Solver equivariance was empirically verified in Fig. 9. The
only conserved quantity for SWE is mass (defined as ∆x2h
times fluid density, so that the mean of ζ is also conserved).
Momentum is not conserved in this SWE system, and an
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Table 3. NRMSE-ζ, ρ(ζ̂, ζ), and average absolute mass and total energy errors for SWEs surrogates at 1h and 25h. NaN values indicate
some rollouts diverged to infinity.

NRMSE-ζ ρ(ζ̂, ζ) Mean(|Mass-ref.|) Mean(|Total energy-ref.|)
Model 1h 25h 1h 25h 1h 25h 1h 25h

FNO/∅ 0.58±0.03 NaN 0.8391±0.0143 NaN 22.09±0.19 NaN 86592±748 NaN
drnet/∅ 0.11±0.01 NaN 0.9977±0.0006 NaN 4.84±0.01 NaN 18572±24 NaN
p1/∅ 0.14 ±0.02 NaN 0.9957 ±0.0012 NaN 11.7±0.09 NaN 45939±366 NaN
p1/M 0.10±0.01 NaN 0.9934±0.0016 NaN 0.06 ±0.01 NaN 128.0 ±23.9 NaN
p4/∅ 0.035±0.003 NaN 0.9992±2e-4 NaN 0.17±0.03 NaN 768.0±112.7 NaN
p4/M 0.034±0.004 1743±386 0.9992±2e-4 -0.02±0.01 0.04 ±0.01 223.4 ±42.4 153.6±17.2 2.6e9±1.9e8
p4m/∅ 0.045±0.005 NaN 0.9993±2e-4 NaN 2.95 ±0.01 NaN 11500±48 NaN
p4m/M 0.032±0.004 0.14±0.02 0.9993±2e-4 0.987±4e-3 0.03 ±0.01 0.29 ±0.03 121.6±19.1 1094±181
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Figure 4. p4m/M+ρu⃗ outperforms other networks with similar parameter counts on INS. (a) Reference horizontal velocity with predictions
from p1/∅ and p4m/M+ρu⃗. (b-c) Accuracy over 50h rollouts, with standard error of the mean over 30 ICs. (d-e) Log-log plots of the
average velocity power spectrum and energy spectrum from 30 ICs at 59.5s. Spectra measure the strength of the chaotic field’s features
for each wavenumber k (number of cycles across the domain). Both the velocity and energy spectra p4m/M+ρu⃗ align best with the
reference. Spectra are scaled by k5. (f) The momentum during the entire evolution time for p1/∅ and all p4m models. (g) Comparison of
data-augmentation (DA) and pushforward trick (PF).

Table 4. The NRMSE-u of decaying turbulence at 36s and 60s for Modern U-net, drnet, Modern U-net with pushforward trick (PF) and
Modern U-net with data augmentation (DA).

Modern U-Net Dilated ResNet Modern U-net + PF Modern U-net + DA

Model 36s 60s 36s 60s 36s 60s 36s 60s

p1/∅ 1.56 ±0.05 3.32 ±0.12 1.57 ±0.04 2.3e4 ±1.9e4 1.88 ±0.03 12.03 ±0.42 1.36 ±0.03 1.59 ±0.12
p1/ρu⃗ 1.50±0.04 2.16±0.22 1.24±0.02 1.48±0.25 1.38 ±0.04 1.47 ±0.07 1.36 ±0.03 1.42 ±0.07
p1/M+ρu⃗ 1.46±0.05 1.71±0.15 1.33±0.04 1.53±0.05 1.43 ±0.02 1.52 ±0.03 1.31 ±0.03 1.38 ±0.06
p4/∅ 1.45±0.04 1.49±0.05 1.34±0.04 1.42±0.05 1.52 ±0.03 2.33 ±0.07 1.39±0.04 1.48±0.07
p4/ρu⃗ 1.46±0.03 1.50±0.07 1.33±0.04 1.53±0.06 1.49 ±0.03 1.54 ±0.04 1.35 ±0.03 1.41 ±0.06
p4/M+ρu⃗ 1.38±0.03 1.41±0.05 1.35±0.04 1.47±0.04 1.43 ±0.02 1.54 ±0.04 1.34 ±0.04 1.31 ±0.04
p4m/∅ 1.37±0.04 1.42±0.05 1.36±0.04 1.47±0.07 1.66 ±0.05 1.65 ±0.05 1.38 ±0.04 1.39 ±0.07
p4m/ρu⃗ 1.33±0.03 1.40±0.06 1.29±0.04 1.40±0.06 1.32 ±0.03 1.37 ±0.03 1.35 ±0.03 1.40 ±0.06
p4m/M+ρu⃗ 1.29±0.04 1.20±0.05 1.29±0.03 1.30±0.07 1.07 ±0.01 1.06 ±0.02 1.24 ±0.03 1.25 ±0.03

eastward wave will reverse and westwards after reflecting
from a boundary. In reality, this would be compensated by a
slight change in the momentum of the Earth, but this is not
simulated.

4.2. Decaying Turbulence

The incompressible Navier–Stokes equations (INS) describe
momentum balance for incompressible Newtonian fluids.
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Our 2D version relates velocities u = [u, v] to pressure p:

∂u

∂t
+ (u · ∇)u = −∇p

ρ
+ µ∇2u (9)

∇ · u = 0 (10)

where ρ is fluid density and µ is kinematic viscosity. Here
we consider the ‘decaying turbulence’ scenario introduced
by (Kochkov et al., 2021). The velocity field is initialized as
filtered Gaussian noise containing high spatial frequencies.
Predicting the evolution of the velocity field is challenging,
since eddy size and Reynolds number change over time as
structures in the flow field coalesce, and the velocity field
becomes smoother and more uniform over time.

Numerical reference solution We solve Eqs. 9-10 with
C-grid staggering of velocities, using jax-cfd (Kochkov
et al., 2021). We follow previous data generation procedures
(Kochkov et al., 2021; Stachenfeld et al., 2021), with a 576×
576 grid and 44 ms time step over 224 seconds. Training
data were coarsened to a time step of 0.84 s, and resolution
was reduced to 48×48 (Stachenfeld et al., 2021) using face-
averaging to conserve momentum and the divergence-free
condition. A burn-in of 148 coarsened steps leaves 120 steps
for training. We trained on 100 ICs consisting of filtered
Gaussian noise with peak spectral density at wavenumber
10 (that is, 10 cycles across the spatial domain). We used
10 initial conditions for testing and validation.

Symmetries and conservation laws We empirically ver-
ified the INS solver’s equivariance (Fig. 10). Conserved
quantities include momentum (equivalent to a constant
mean velocities since ρ is constant), and mass (through
the divergence-free condition).

5. Results
5.1. Closed Shallow Water System

We first trained and evaluated neural surrogates for the
SWE task. We followed a hybrid learning strategy, based
on the observation that the semiimplicit numerical inte-
gration scheme calculates ζt+1 slowly with an iterative
solver, but then calculates [ut+1, vt+1] given ζt+1 quickly
through a mathematical formula. We therefore trained sur-
rogates to predict only ζ̂t+1, and calculated [ût+1, v̂t+1]
as in the numerical solver (Appendix I). Keeping param-
eter counts constant, we compared networks equivariant
to 3 symmetry groups: p1 (translation only, as in stan-
dard CNNs), p4 (translation-rotation) and p4m (translation-
rotation-reflection). We also compared mass conserving net-
works (M) to those without physical constraints (∅). Table
1 lists all constraint combinations used for training, which
took 0.5 h for non-equivariant networks and 2h for equiv-
ariant networks on 2 A100 GPUs. Table 3 shows surrogate

accuracy, along with errors in mass and total energy.

Fig. 3a compares autoregressive rollouts from unconstrained
(p1/∅) and maximally constrained networks (p4m/M).
p4m/M maintained accurate results for a much greater
time interval, and in this case was visually indistinguish-
able from the reference solution throughout the simulation
(for other surrogates, see Fig. 15). Over 20 random held-
out ICs, p4m/M exhibited lower normalized RMSE values
and higher correlations than other networks (Figs. 3b-c)).
p4m/M also outperformed p1/∅ trained with input noise
(Stachenfeld et al., 2021; Lippe et al., 2024), and uncon-
strained FNO and drnet architectures. Compared to other
networks, p4m/M trained for more epochs before early stop-
ping occurred, reached a lower validation loss (Fig. 3d) and
produced accurate results for a greater fraction of held-out
ICs (Fig. 3e). Mass conservation was respected up to numer-
ical precision by the original solver and physics-constrained
architectures, but not by other surrogates (Fig. 3f). Over-
all, we found that symmetry constraints were more effective
than conservation laws, but that equivariant surrogates could
be further improved by physical constraints.

5.2. Decaying Turbulence

We next trained and evaluated neural surrogates for INS.
Here we used the velocity fields [u, v] as both inputs
and outputs. As for SWEs, we tested p1, p4 and p4m
equivariance, but now considered 3 levels of physical con-
straints: unconstrained (∅), momentum conservation (ρu⃗)
and mass/momentum conservation (M+ρu⃗). Table (2) lists
all constraint combinations used for training, which took
0.4 h for nonequivariant networks and 1.4 h for equivariant
networks on 2 A100 GPUs. Table 4 lists accuracy after 36s
and 60s for all surrogates.

Figure (4-a) compares autoregressive rollouts from un-
constrained (p1/∅) and maximally constrained networks
(p4m/M+ρu⃗). As for the SWEs, both constraint types im-
proved accuracy and stability of INS surrogates (Fig. 4b-c),
and double constraints were best, also outperforming net-
works trained with input noise (Stachenfeld et al., 2021).
Unconstrained networks were particularly susceptible to
numerical instability in this task (rollouts in Fig. 18-19).

Spectral consistency To evaluate the performance of neural
surrogates beyond the time at which their predictions decor-
relate from the reference solution, we followed previous
studies (Kochkov et al., 2021; Lippe et al., 2024; Stachen-
feld et al., 2021) in further comparing the power spectra of
predicted velocity fields, and of energy fields 1

2 |u⃗|
2, to those

of the reference solver. Even after average correlation with
the reference solution reached 0, we found that p4m/M+ρu⃗
networks matched the spectra of the reference solver bet-
ter than other methods, consistently across multiple roll-
out times and especially at the highest spatial frequencies
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Figure 5. Generalization beyond training data. (a) SWE rollouts from p1/∅ p4m/M on L-shaped ICs. (b-c) Accuracy of each network over
six generalization tests (Appendix J.11). (d) INS rollouts from p1/∅ and p4m/M+ρu⃗ on ICs with peak wavenumber 8. (e-f) Velocity- and
energy spectra for INS at t = 99.7 s, averaged over 10 ICs.

Table 5. Comparison of nRMSE for zonal velocity, energy spectrum error (ESE), and ρ(û, u) for real ocean currents predicted 12h and
120h ahead. Architecture and hyperparameters for Equrot Unet are as described in (Wang et al., 2021)

12h 120h

Model nRMSE ESE ρ(û, u) nRMSE ESE ρ(û, u)

p1/∅ 1.52±0.04 5.33±6.23 0.01±0.02 1.66±0.03 13.9±11.4 -0.02±0.02
Equrot Unet (Wang et al., 2021) 0.91±0.02 0.85±0.16 0.31±0.02 1.14±0.03 1.07±1.11 0.00±0.02
p4m/M+ρu⃗ 0.88±0.02 0.80±0.12 0.45±0.03 1.10±0.03 0.94±0.90 0.11±0.02

b

t =4.2s
p4m/M+    p4m/M+    p1/�p1/�

t =12.6s

Network size

a c

d

Training data size

Figure 6. Accuracy of symmetry- and physics-constrained INS
models across data and network sizes, at 4.2 and 12.6 s. (a-
b) NRMSE-u and ρ(û, u) vs. network size for p1/∅ and
p4m/M+ρu⃗. (c-d) NRMSE-u and ρ(û, u) for p1/∅ and
p4m/M+ρu⃗ vs. training datasets size.

(Figs. 4d-e, additional spectra in Fig. 21). Conservation of
momentum was respected only by momentum-constrained
networks (Fig. 4f, 20). Training p4m/M+ρu⃗ surrogates
with input noise resulted in lower accuracy but excellent
long-term numerical stability (Fig. 22).

Specialized training modes We further compared the per-
formance gains from symmetries and physical constraints
to those offered by specialized training modes for PDE sur-

rogates (Fig. 4g): data augmentation and the pushforward
trick. We applied data augmentation using the p4m symme-
try group, such that velocity fields on the staggered C-grid
were transformed consistently with the numerical solver:
S ◦ Tg(w) = Tg ◦ S. We applied the pushforward trick as
in (Brandstetter et al., 2022c), with the MSE loss computed
after two autoregessive time steps, but gradients backpropa-
gated only one step. Both of these training modes improved
performance compared to standard training of p1/∅, but
could not match the accuracy of p4m/M+ρu⃗ with standard
training (Fig. 4g, Table 4). Data augmentation had, as ex-
pected, no effect on p4m surrogates, but pushforward train-
ing of p4m/M+ρu⃗ produced the most accurate surrogate
overall, showing that doubly constrained networks benefit
from autoregressive training. We present further results and
details on these modes in appendices J.9-J.10.

Alternate base architecture Beyond evaluating the utility
of constraining modern U-nets, we also evaluated symme-
tries and physical constraints for Dilated ResNet surrogates
of INS(Table 4). Performance was strikingly consistent with
previous results, with symmetries more effective than phys-
ical constraints but further benefits observable when com-
bining both. Thus, the separate and combined effects of our
constraints were consistent across these two architectures.
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We present additional results for drnets in Appendix J.8.

5.3. Generalization to Novel ICs

Closed Shallow Water System Fig. 5a shows an initial
condition consisting of an ‘L’-shaped elevation (details in
Fig. 31). Randomly varying the elevation’s location and
shape, we found p4m/M to outperform alternatives with
equal parameter counts (Fig. 5b-c). Additional results are
shown in Fig. 29-30.

Decaying Turbulence We tested surrogates on ICs with
peak wavenumber changed from 10 to 8. p4m/M+ρu⃗
matched the reference solver (Fig. 5d) and its spectra
(Figs. 5e-f) most closely. Additional results are shown in
Figs. 32-34.

5.4. Effects of Network and Dataset Size

To investigate how the benefits of symmetries and physical
constraints scale with network and dataset size, we trained
p1/∅ and p4m/M+ρu⃗ networks with 0.1M, 2M and and
8.5M parameters on 100 INS simulations. At both 4.2 and
12.6 s we observed lower errors and high correlations for
p4m/M+ρu⃗ for all network sizes. The relative advantage
of p4m/M+ρu⃗ over p1/∅ was greatest for smaller networks
and longer forecast horizons, and overall performance was
best for larger networks. CPU and GPU inference speeds
are reported in Appendix J.13.

Training 0.1M-parameter p1/∅ and p4m/M+ρu⃗ networks
on 100, 400 and 760 simulations showed constraints en-
hance performance robustly across dataset size (Fig. 6c-d).
Improvements were greater on larger datasets and longer
rollouts (additional results and spectra in Fig. 35).

5.5. Predicting Ocean Current Observations

We trained neural surrogates to predict real-world observa-
tions of ocean currents (Wang et al., 2021) (data and training
details in Appendix J.14). Doubly-constrained p4m/M+ρu⃗
predicted future observations better than p1/∅, and also out-
performed the equivariant network proposed in Wang et al.,
2021, in terms of NRMSE and correlation (Fig. 7) as well
as Energy Spectrum Error (ESE, Table 5).

6. Discussion
We enforced hard constraints on symmetries and conserva-
tion laws for neural PDE surrogates. We extended the appli-
cability of previous techniques to staggered grids, and sys-
tematically tested performance across tasks and constraints.
Symmetries were more effective, but conservation laws were
not redundant. Double constraints matched reference sim-
ulations, individually and statistically, better than multiple
architectures, pushforward training, and data augmentation.
In our challenging PDE tasks, insufficiently constrained sur-
rogates diverged towards infinity before completing their
rollouts (Table 3), as did the PDEs’ conserved quantities
themselves in some cases (Fig. 3f, 4f). These results un-
derline physics- and symmetry-constrained surrogates as a
promising strategy when long-term accuracy is required but
data are expensive or limited, as in weather, climate and
industrial fluid mechanics.

Limitations & Future work For large enough net-
works and datasets, constraints might be learned from the
data (Stachenfeld et al., 2021; Watt-Meyer et al., 2023), but
the benefit of constraints grows with rollout length even for
large networks and datasets. Thus, constraints are likely
relevant for longer time scales, e.g. for seasonal forecasting
and climate projections (Kochkov et al., 2024; Watt-Meyer
et al., 2023; Nguyen et al., 2023). How constraints limit
error accumulation remains unclear, but empirical investiga-
tions of how error accumulation correlates with constraint
violations over time and ICs could provide some clarity.

We considered mass and momentum conservation, and sym-
metries of square 2D grids. Future work could pursue other
PDEs such as hyperbolic equations (Takamoto et al., 2022),
energy conservation (Cranmer et al., 2020), local vs. global
conservation (McGreivy & Hakim, 2023), continuous sym-
metry groups (Cohen et al., 2018; Esteves et al., 2018),
alternative grids and meshes (Cohen et al., 2019; De Haan
et al., 2021; Horie & Mitsume, 2022), generalization to
new geometries (Wandel et al., 2021; Horie & Mitsume,
2022), unrolled training (Brandstetter et al., 2022c; List
et al., 2024), invariant measure learning (Schiff et al., 2024)
and generative modeling (Lippe et al., 2024; Kohl et al.,
2024).
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Cohen, T. S., Geiger, M., Köhler, J., and Welling, M. Spher-
ical cnns. In International Conference on Learning Rep-
resentations, 2018.

Cranmer, M., Greydanus, S., Hoyer, S., Battaglia, P.,
Spergel, D., and Ho, S. Lagrangian neural networks, 2020.
URL https://arxiv.org/abs/2003.04630.

De Haan, P., Weiler, M., Cohen, T., and Welling, M. Gauge
equivariant mesh cnns: Anisotropic convolutions on geo-
metric graphs. In International Conference on Learning
Representations, 2021.

De Pondeca, M. S., Manikin, G. S., DiMego, G., Benjamin,
S. G., Parrish, D. F., Purser, R. J., Wu, W.-S., Horel, J. D.,
Myrick, D. T., Lin, Y., et al. The real-time mesoscale
analysis at noaa’s national centers for environmental pre-
diction: current status and development. Weather and
Forecasting, 26(5):593–612, 2011.

Esteves, C., Allen-Blanchette, C., Makadia, A., and Dani-
ilidis, K. Learning so (3) equivariant representations with
spherical cnns. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pp. 52–68, 2018.

Fanaskov, V., Yu, T., Rudikov, A., and Oseledets, I. General
covariance data augmentation for neural pde solvers. In

10

https://openreview.net/forum?id=_xwr8gOBeV1
https://openreview.net/forum?id=_xwr8gOBeV1
https://arxiv.org/abs/2003.04630


Geometric and Physical Constraints Synergistically Enhance Neural PDE Surrogates

International Conference on Machine Learning, pp. 9665–
9688. PMLR, 2023.
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message passing for molecular graphs. In International
Conference on Learning Representations, 2020.

Greenfeld, D., Galun, M., Basri, R., Yavneh, I., and Kimmel,
R. Learning to optimize multigrid pde solvers. In Interna-
tional Conference on Machine Learning, pp. 2415–2423.
PMLR, 2019.

Greydanus, S., Dzamba, M., and Yosinski, J. Hamiltonian
neural networks. Advances in neural information process-
ing systems, 32, 2019.

Gupta, J. K. and Brandstetter, J. Towards multi-
spatiotemporal-scale generalized pde modeling. Transac-
tions on Machine Learning Research, 2023.

Helwig, J., Zhang, X., Fu, C., Kurtin, J., Wojtowytsch, S.,
and Ji, S. Group equivariant fourier neural operators for
partial differential equations. In International Conference
on Machine Learning, pp. 12907–12930, 2023.

Holl, P. and Thuerey, N. Φflow (PhiFlow): Differentiable sim-
ulations for pytorch, tensorflow and jax. In International
Conference on Machine Learning. PMLR, 2024.

Horie, M. and Mitsume, N. Physics-embedded neural net-
works: Graph neural pde solvers with mixed boundary
conditions. Advances in Neural Information Processing
Systems, 35:23218–23229, 2022.

Hsieh, J.-T., Zhao, S., Eismann, S., Mirabella, L., and Er-
mon, S. Learning neural pde solvers with convergence
guarantees. In International Conference on Learning
Representations, 2019.

Huang, Y. and Greenberg, D. S. Symmetry constraints
enhance long-term stability and accuracy in unsupervised
learning of geophysical fluid flows. Authorea Preprints,
2023.

Jasak, H. Openfoam: Open source cfd in research and
industry. International journal of naval architecture and
ocean engineering, 1(2):89–94, 2009.

Jungclaus, J. H., Lorenz, S. J., Schmidt, H., Brovkin, V.,
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J., Mooers, G., Klöwer, M., Lottes, J., Rasp, S., Düben,
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S., Pinardi, N., Tonani, M., and Nardone, G. Combin-
ing model and geostationary satellite data to reconstruct
hourly sst field over the mediterranean sea. Remote sens-
ing of environment, 146:11–23, 2014.

McGreivy, N. and Hakim, A. Invariant preservation in
machine learned pde solvers via error correction. In ICLR
Workshop on Physics for Machine Learning, 2023.

Michelis, M. Y. and Katzschmann, R. K. Physics-
constrained unsupervised learning of partial differential
equations using meshes, 2022. URL https://arxiv.
org/abs/2203.16628.

Mohan, A. T., Lubbers, N., Livescu, D., and Chertkov,
M. Embedding hard physical constraints in neural net-
work coarse-graining of 3d turbulence. arXiv preprint
arXiv:2002.00021, 2020.

Nguyen, T., Brandstetter, J., Kapoor, A., Gupta, J. K., and
Grover, A. Climax: A foundation model for weather
and climate. In International Conference on Machine
Learning, pp. 25904–25938. PMLR, 2023.

Noether, E. Invariante variationsprobleme. Nachrichten
von der Gesellschaft der Wissenschaften zu Göttingen,
Mathematisch-Physikalische Klasse, 1918:235–257,
1918. URL http://eudml.org/doc/59024.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
physics, 378:686–707, 2019.

Raonic, B., Molinaro, R., De Ryck, T., Rohner, T., Bar-
tolucci, F., Alaifari, R., Mishra, S., and de Bézenac, E.
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A. Symmetries of SWEs and INS with C-grid staggering
A.1. Grid Discretizations

The Arakawa C-grid (Arakawa, 1977) is a discretization technique frequently employed in numerical simulation, partic-
ularly in fluid dynamics. In this section, the C-grid staggering for shallow water equations (SWEs) and incompressible
Navier–Stokes equations (INS) is presented (Figure 8).

C-grid staggering of SWEs C-grid staggering of INSsa b

Figure 8. Arakawa’s C-grid staggering approach has been employed for time integrating the of shallow water equations (SWEs) and
incompressible Navier–Stokes equations (INS). (a) Red square points denote the vertical displacement of the free surface, denoted by ζ.
The circular points correspond to the velocities u and v. (b) In the discretization of the INS system, the square points represents the vector
potential a, while the velocity is indicated by the circular points. The black stars indicate pressure, which is calculated by the numerical
solver at each time step but not used as a prognostic variable to solve for velocity in future time steps.

A.2. The symmetries of shallow water equations

The shallow water system with closed boundary is represented by Equations (6-8). For a specified set of PDE fields (i.e., ζ,
u, and v) at a given time t, the solution of the equation for ζ at the subsequent time interval can be expressed as Sζ(ζ, u, v).
The symmetry transformations (flip, rotation, and flip-rotation) of SWEs with the numerical solver S can be expressed as
follows:

flip : Sζ(F (ζ), F (u),−F (v)) = F (Sζ(ζ, u, v)) (11)
rotation : Sζ(R(ζ),−R(v), R(u)) = R(Sζ(ζ, u, v)) (12)

flip− rotation : Sζ(R(F (ζ)), R(F (v)), R(F (u))) = R(F (Sζ(ζ, u, v))) (13)

In this section, the numerical solution of the equations of motion for the variable ζ in the subsequent time step will be
denoted by Sζ . The actions of the flipping operator, F , and the rotation operator, R, will also be defined for these PDE
fields. Figure 9 show the equivariance of the numerical solver to these transformations.
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Figure 9. Empirical validation of the symmetries of the numerical SWE solver is demonstrated through three transformations: flip, rotation,
and flip-rotation. These plots correspond to Equations (11-13).

A.3. Symmetries of the incompressible Navier–Stokes equations

The incompressible Navier–Stokes equations are presented in Equations (10-9). Given a set of initial conditions u and
v at a particular time t, the solutions to the velocity equation are expressed as Su(u, v)and Sv(u, v) at time t + 1. The
mathematical description of the flip, rotation, and flip-rotation symmetries of INS is as follows:

flip :

{
Su(−F (u), F (v)) = −F (Su(u, v))
Sv(−F (u), F (v)) = F (Sv(u, v))

(14)

rotation :

{
Su(R(v),−R(u)) = R(Sv(u, v))
Sv(R(v),−R(u)) = R(−Su(u, v))

(15)

flip− rotation :

{
Su(R(F (v)),−R(−F (u))) = R(F (Sv(u, v)))
Sv(R(F (v)),−R(−F (u))) = −R(−F (Su(u, v)))

(16)

As shown in Figure 10, the symmetries of the incompressible Navier–Stokes equations encompass are generated by flipping
and rotation.
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Figure 10. Empirical confirmation of the equivariance of the INS solver.

B. Padding options
In certain numerical solvers, although a C-grid staggering is employed, the software generates output of an identical size for
each component of the vector field. This phenomenon necessitates a thorough examination of the selected conventions for
padding and boundary representation in the outputs. In such instances, the implementation of a padding technique becomes
imperative to restore the vector field to its standard C-grid staggering. One potential solution is the implementation of
periodic padding for the periodic boundary conditions (BCs). It is imperative to emphasize that the physical properties of
the data, such as the divergence in the incompressible Navier–Stokes equations and the BCs, must remain unaltered during
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the implementation of this correction.

C. Group equivariant input layers for SWE and INS
In this section, we present explicit formulas for equivariant input layers and show that they satisfy equivariance relations.
For the sake of brevity, we have elected to include only the proof for the p4 input layer for SWEs, but extending this proof to
p4m or INS is straightforward.

C.1. Group equivariant input layer for SWEs

Given that the input data for shallow water equations (SWEs) utilizes C-grid staggering, as illustrated in Figure 8, it is
necessary to construct an input layer that aligns with the C-grid staggering while preserving equivariance. On the C-grid, the
velocity components u and v possess distinct dimensions. To address this, we propose the utilization of two rectangular
filters, denoted as Wu

j,i,·,· and W v
j,i,·,·, for the variables u and v, respectively. The symbol · is employed to denote all values

along a given axis. The filter W is a cin × c0 ×K × S array, where c0 denotes the batch size, cin signifies the number of
input channels, and K × S represents the filter size.

For instance, on a periodic 2D grid tiling the torus with 3× 3 grid cells, the sizes are 4× 3 for u and 3× 4 for v. While
the height field ζ is defined at grid cell centers, u, v are defined on the interfaces (edges) between the grid cells. In the
context of performing group transformations in the input layer, it is imperative to exchange the filters for u and v to ensure
compatibility with the dimensions of the input variables.

p4 We first introduce an input layer of the p4 group transformation for SWEs, which has four channels obtained from four
different rotated filters. The output y of this input layer is defined as follows (⋆ denotes convolution):

y1j,0,·,· =

cζin−1∑
i=0

(
W ζ

j,i,·,· ⋆ ζi,·,·

)
+

cuin−1∑
i=0

(
Wu

j,i,·,· ⋆ ui,·,·
)
+

cvin−1∑
i=0

(
W v

j,i,·,· ⋆ vi,·,·
)
+ bj , (17)

y1j,1,·,· =

cζin−1∑
i=0

(
R90◦

rot (W ζ
j,i,·,·) ⋆ ζi,·,·

)
+

cuin−1∑
i=0

(
−R90◦

rot (W v
j,i,·,·) ⋆ ui,·,·

)

+

cvin−1∑
i=0

(
R90◦

rot (Wu
j,i,·,·) ⋆ vi,·,·

)
+ bj ,

(18)

y1j,2,·,· =

cζin−1∑
i=0

(
R180◦

rot (W ζ
j,i,·,·) ⋆ ζi,·,·

)
+

cuin−1∑
i=0

(
−R180◦

rot (Wu
j,i,·,·) ⋆ ui,·,·

)

+

cvin−1∑
i=0

(
−R180◦

rot (W v
j,i,·,·) ⋆ vi,·,·

)
+ bj ,

(19)

y1j,3,·,· =

cζin−1∑
i=0

(
R270◦

rot (W ζ
j,i,·,·) ⋆ ζi,·,·

)
+

cuin−1∑
i=0

(
R270◦

rot (W v
j,i,·,·) ⋆ ui,·,·

)

+

cvin−1∑
i=0

(
−R270◦

rot (Wu
j,i,·,·) ⋆ vi,·,·

)
+ bj .

(20)

where W ζ
j,i,·,· is a square filter for ζ, for example 4× 4. b is a cout-element vector.
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p4m Next, we define an input layer for p4m that uses the same logic as the p4 input layer. It has 8 different group
transformations, including flips and rotations.

y1j,0,·,· =

cζin−1∑
i=0

(
W ζ

j,i,·,· ⋆ ζi,·,·

)
+

cuin−1∑
i=0

(
Wu

j,i,·,· ⋆ ui,·,·
)
+

cvin−1∑
i=0

(
W v

j,i,·,· ⋆ vi,·,·
)
+ bj , (21)

y1j,1,·,· =

cζin−1∑
i=0

(
Fflip(W

ζ
j,i,·,·) ⋆ ζi,·,·

)
+

cuin−1∑
i=0

(
Fflip(W

u
j,i,·,·) ⋆ ui,·,·

)
+

cvin−1∑
i=0

(
Fflip(W

v
j,i,·,·) ⋆ vi,·,·

)
+ bj ,

(22)

y1j,2,·,· =

cζin−1∑
i=0

(
R90◦

rot (W ζ
j,i,·,·) ⋆ ζi,·,·

)
+

cuin−1∑
i=0

(
R90◦

rot (W v
j,i,·,·) ⋆ ui,·,·

)

+

cvin−1∑
i=0

(
R90◦

rot (Wu
j,i,·,·) ⋆ vi,·,·

)
+ bj ,

(23)

y1j,3,·,· =

cζin−1∑
i=0

(
Fflip(R

90◦

rot (W ζ
j,i,·,·)) ⋆ ζi,·,·

)
+

cuin−1∑
i=0

(
Fflip(R

90◦

rot (W v
j,i,·,·)) ⋆ ui,·,·

)

+

cvin−1∑
i=0

(
Fflip(R

90◦

rot (Wu
j,i,·,·)) ⋆ vi,·,·

)
+ bj ,

(24)

y1j,4,·,· =

cζin−1∑
i=0

(
R180◦

rot (W ζ
j,i,·,·) ⋆ ζi,·,·

)
+

cuin−1∑
i=0

(
R180◦

rot (Wu
j,i,·,·) ⋆ ui,·,·

)

+

cvin−1∑
i=0

(
R180◦

rot (W v
j,i,·,·) ⋆ vi,·,·

)
+ bj ,

(25)

y1j,5,·,· =

cζin−1∑
i=0

(
Fflip(R

180◦

rot (W ζ
j,i,·,·)) ⋆ ζi,·,·

)
+

cuin−1∑
i=0

(
Fflip(R

180◦

rot (Wu
j,i,·,·)) ⋆ ui,·,·

)

+

cvin−1∑
i=0

(
Fflip(R

180◦

rot (W v
j,i,·,·)) ⋆ vi,·,·

)
+ bj ,

(26)

y1j,6,·,· =

cζin−1∑
i=0

(
R270◦

rot (W ζ
j,i,·,·) ⋆ ζi,·,·

)
+

cuin−1∑
i=0

(
R270◦

rot (W v
j,i,·,·) ⋆ ui,·,·

)

+

cvin−1∑
i=0

(
R270◦

rot (Wu
j,i,·,·) ⋆ vi,·,·

)
+ bj ,

(27)

y1j,7,·,· =

cζin−1∑
i=0

(
Fflip(R

270◦

rot (W ζ
j,i,·,·)) ⋆ ζi,·,·

)
+

cuin−1∑
i=0

(
Fflip(R

270◦

rot (W v
j,i,·,·)) ⋆ ui,·,·

)

+

cvin−1∑
i=0

(
Fflip(R

270◦

rot (Wu
j,i,·,·)) ⋆ vi,·,·

)
+ bj ,

(28)

where the filters Wu
j,i,·,· and W v

j,i,·,· are rectangles and the filter W ζ
j,i,·,· is a square.
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C.2. Proof of p4 equivariance for the SWE p4 input layer

Here we prove group equivariance (Cohen & Welling, 2016) for the SWE p4 input layer. To this end, the following equation
must be demonstrated: y(R(ζ),−R(v), R(u)) = R(y(ζ, u, v)) where y is the output of the p4 input layer for SWEs. This
equation is simply the rotation symmetry of a shallow water system as depicted in Equation 12.

The forms of the ordinary input layer, denoted by y(ζ, u, v) in Equations (17-20), have previously been described. Applying
them to a rotated inputs consisting of R90◦

rot (ζi,·,·), −R90◦

rot (vi,·,·), and R90◦

rot (ui,·,·) we get:

ỹ1j,0,·,· =

cζin−1∑
i=0

(
W ζ

j,i,·,· ⋆ R
90◦

rot (ζi,·,·)
)
+

cuin−1∑
i=0

(
Wu

j,i,·,· ⋆−R90◦

rot (vi,·,·)
)

+

cvin−1∑
i=0

(
W v

j,i,·,· ⋆ R
90◦

rot (ui,·,·)
)
+ bj ,

(29)

ỹ1j,1,·,· =

cζin−1∑
i=0

(
R90◦

rot (W ζ
j,i,·,·) ⋆ R

90◦

rot (ζi,·,·)
)
+

cuin−1∑
i=0

(
−R90◦

rot (W v
j,i,·,·) ⋆−R90◦

rot (vi,·,·)
)

+

cvin−1∑
i=0

(
R90◦

rot (Wu
j,i,·,·) ⋆ R

90◦

rot (ui,·,·)
)
+ bj ,

(30)

ỹ1j,2,·,· =

cζin−1∑
i=0

(
R180◦

rot (W ζ
j,i,·,·) ⋆ R

90◦

rot (ζi,·,·)
)
+

cuin−1∑
i=0

(
−R180◦

rot (Wu
j,i,·,·) ⋆−R90◦

rot (vi,·,·)
)

+

cvin−1∑
i=0

(
−R180◦

rot (W v
j,i,·,·) ⋆ R

90◦

rot (ui,·,·)
)
+ bj ,

(31)

ỹ1j,3,·,· =

cζin−1∑
i=0

(
R270◦

rot (W ζ
j,i,·,·) ⋆ R

90◦

rot (ζi,·,·)
)
+

cuin−1∑
i=0

(
R270◦

rot (W v
j,i,·,·)−R90◦

rot (vi,·,·)
)

+

cvin−1∑
i=0

(
−R270◦

rot (Wu
j,i,·,·) ⋆ R

90◦

rot (ui,·,·)
)
+ bj .

(32)
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Applying the same a 90-degree rotation to the regular representation output for unrotated inputs, we get:

R90◦

rot (y1j,0,·,·) =R90◦

rot

( cζin−1∑
i=0

(
W ζ

j,i,·,· ⋆ ζi,·,·

)
+

cuin−1∑
i=0

(
Wu

j,i,·,· ⋆ ui,·,·
)

+

cvin−1∑
i=0

(
W v

j,i,·,· ⋆ vi,·,·
)
+ bj

)
= ỹ1j,1,·,·

(33)

R90◦

rot (y1j,1,·,·) =R90◦

rot

( cζin−1∑
i=0

(
R90◦

rot (W ζ
j,i,·,·) ⋆ ζi,·,·

)
+

cuin−1∑
i=0

(
−R90◦

rot (W v
j,i,·,·) ⋆ ui,·,·

)

+

cvin−1∑
i=0

(
R90◦

rot (Wu
j,i,·,·) ⋆ vi,·,·

)
+ bj

)
= ỹ1j,2,·,·

(34)

R90◦

rot (y1j,2,·,·) =R90◦

rot

( cζin−1∑
i=0

(
R180◦

rot (W ζ
j,i,·,·) ⋆ ζi,·,·

)
+

cuin−1∑
i=0

(
−R180◦

rot (Wu
j,i,·,·) ⋆ ui,·,·

)

+

cvin−1∑
i=0

(
−R180◦

rot (W v
j,i,·,·) ⋆ vi,·,·

)
+ bj

)
= ỹ1j,3,·,·

(35)

R90◦

rot (y1j,3,·,·) =R90◦

rot

( cζin−1∑
i=0

(
R270◦

rot (W ζ
j,i,·,·) ⋆ ζi,·,·

)
+

cuin−1∑
i=0

(
R270◦

rot (W v
j,i,·,·) ⋆ ui,·,·

)

+

cvin−1∑
i=0

(
−R270◦

rot (Wu
j,i,·,·) ⋆ vi,·,·

)
+ bj

)
= ỹ1j,0,·,·

(36)

Applying the definition of the rotation operator’s action on the regular representation (rotation + permutation), we see the
channels of these two regular representations match, so we arrive at the formula:

R90◦

rot (y1(ζi,·,·, ui,·,·, vi,·,·)) = ỹ1(R90◦

rot (ζi,·,·),−R90◦

rot (vi,·,·), R
90◦

rot (ui,·,·)) (37)

Thus we have proved the group equivariance of the p4 input layer in shallow water equations.

C.3. Group equivariant input layer for INS

p4 The system state for the incompressible Navier–Stokes equations consists of velocity fields u and v, which possess
disparate dimensions in the C-grid staggering. Consequently, two rectangular filters, denoted as Wu

j,i,·,· and W v
j,i,·,·, are

required for the velocity field. According to the symmetries of rotation of INS in Equation (15), we first construct a p4 input
layer for INS as follows:

y1j,0,·,· =

cuin−1∑
i=0

(
Wu

j,i,·,· ⋆ ui,·,·
)
+

cvin−1∑
i=0

(
W v

j,i,·,· ⋆ vi,·,·
)
+ bj , (38)

y1j,1,·,· =

cuin−1∑
i=0

(
R90◦

rot (W v
j,i,·,·) ⋆ ui,·,·

)
+

cvin−1∑
i=0

(
−R90◦

rot (Wu
j,i,·,·) ⋆ vi,·,·

)
+ bj , (39)

y1j,2,·,· =

cuin−1∑
i=0

(
−R180◦

rot (Wu
j,i,·,·) ⋆ ui,·,·

)
+

cvin−1∑
i=0

(
−R180◦

rot (W v
j,i,·,·) ⋆ vi,·,·

)
+ bj , (40)

y1j,3,·,· =

cuin−1∑
i=0

(
−R270◦

rot (W v
j,i,·,·) ⋆ ui,·,·

)
+

cvin−1∑
i=0

(
R270◦

rot (Wu
j,i,·,·) ⋆ vi,·,·

)
+ bj . (41)

p4m Subsequently, in accordance with the flip-rotation symmetries of INS in Equation (16), the p4m input layer is defined
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by the following eight equations:

y1j,0,·,· =

cuin−1∑
i=0

(
Wu

j,i,·,· ⋆ ui,·,·
)
+

cvin−1∑
i=0

(
W v

j,i,·,· ⋆ vi,·,·
)
+ bj , (42)

y1j,1,·,· =

cuin−1∑
i=0

(
Fflip(W

u
j,i,·,·) ⋆ ui,·,·

)
+

cvin−1∑
i=0

(
Fflip(W

v
j,i,·,·) ⋆ vi,·,·

)
+ bj , (43)

y1j,2,·,· =

cuin−1∑
i=0

(
R90◦

rot (W v
j,i,·,·) ⋆ ui,·,·

)
+

cvin−1∑
i=0

(
R90◦

rot (Wu
j,i,·,·) ⋆ vi,·,·

)
+ bj , (44)

y1j,3,·,· =

cuin−1∑
i=0

(
Fflip(R

90◦

rot (W v
j,i,·,·)) ⋆ ui,·,·

)
+

cvin−1∑
i=0

(
Fflip(R

90◦

rot (Wu
j,i,·,·)) ⋆ vi,·,·

)
+ bj , (45)

y1j,4,·,· =

cuin−1∑
i=0

(
R180◦

rot (Wu
j,i,·,·) ⋆ ui,·,·

)
+

cvin−1∑
i=0

(
R180◦

rot (W v
j,i,·,·) ⋆ vi,·,·

)
+ bj , (46)

y1j,5,·,· =

cuin−1∑
i=0

(
Fflip(R

180◦

rot (Wu
j,i,·,·)) ⋆ ui,·,·

)
+

cvin−1∑
i=0

(
Fflip(R

180◦

rot (W v
j,i,·,·)) ⋆ vi,·,·

)
+ bj , (47)

y1j,6,·,· =

cuin−1∑
i=0

(
R270◦

rot (W v
j,i,·,·) ⋆ ui,·,·

)
+

cvin−1∑
i=0

(
R270◦

rot (Wu
j,i,·,·) ⋆ vi,·,·

)
+ bj , (48)

y1j,7,·,· =

cuin−1∑
i=0

(
Fflip(R

270◦

rot (W v
j,i,·,·)) ⋆ ui,·,·

)
+

cvin−1∑
i=0

(
Fflip(R

270◦

rot (Wu
j,i,·,·)) ⋆ vi,·,·

)
+ bj , (49)

C.4. Empirical validation of equivariance for SWE and INS input layers

In the preceding sections, the forms of group equivariant input layers for SWEs and INS were introduced. In this section,
the equivariance of input layers for SWEs and INS is demonstrated empirically. Figure 11 illustrates the group equivariant
input layer of SWEs, specifically the p4 and p4m layers. Given that the output of the input layer possesses four and eight
group-indexed channels in the regular representations for p4 and p4m, respectively, an average is taken of the representations
to produce a single equivariant scalar field output.
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Figure 11. Example illustrating equivariance of the SWE input layer for groups p4 and p4m on staggered grid input data. The equivariance
relation is observed to hold, to numerical precision. In this case, a G-averaged regular representation from the input layer’s output is
employed to visualize the equivariance.

Figure 12 illustrates the equivariance of p4 and p4m group equivariant input layers for INS. It can be seen that the input
layer is equivariant in both cases.
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Figure 12. Group equivariance of INS input layers for p4 and p4m. The mathematical formulas of these input layers are given in
equations 42-49.

D. Group equivariant output layer on the C-grid staggering for INS
As shown in Fig. 1, the internal (hidden) layers of our equivariant PDE surrogates comprise a modern U-Net. In the case of
a scalar field output defined at grid cell centers, direct utilization of the function r2_act.trivial_repr in escnn is
permissible, for example, for ζ in SWEs. However, for vector fields with C-grid staggering, the vector field implementation
in escnn, referred to as r2_act.irrep(1), cannot be used because it is not on the C-grid and does not satisfy the
symmetries of the discretized PDEs. Therefore, the output layers of p4 and p4m for the vector field are constructed on the
C-grid in INS using the following formulations:

p4 : ui+0.5,j = pi+1,j,0 − pi,j,1; vi,j+0.5 = pi,j+1,2 − pi,j,3 (50)

p4m :

{
ui+0.5,j = pi+1,j,1 − pi,j,3 + pi+1,j,5 − pi,j,7
vi,j+0.5 = pi,j+1,2 − pi,j,4 + pi,j+1,6 − pi,j,0

(51)

For a regular representations p, the elements pi,j,k are defined as follows: The index i and j denote the spatial position,
while k indicates the group element index. i+ 0.5 and j + 0.5 denote the position of outputs on the C-grids for u and v,
which are staggered by half a grid cell relative to p. These layers satisfy the group equivariance property while providing
staggered outputs on the C-grid. Fig. (1) show how the output layer make up part of the surrogate architecture (blue box).

D.1. Proofs of group equivariance for output layers with C-grid staggering

Equations 50-51 give the formulas defining the output layers for p4 and p4m. In this section, we will demonstrate that the
equivariance relations are satisfied as intended.

D.1.1. VECTOR OUTPUT LAYER WITH P4 REGULAR REPRESENTATION INPUTS

Given inputs uin, vuin, the regular representation layer contains four channels indexed by the finite rotational component
of p4 symmetry group: p·,·,0, p·,·,1, p·,·,2, and p·,·,3. When the input undergoes transformation to R(v),−R(u), the four
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regular representations are converted to p̂·,·,0, p̂·,·,1, p̂·,·,2 and p̂·,·,3 respectively. By the assumption of equivariance for all
network components from the inputs to p, the following relations hold:

R(p·,·,0) = p̂·,·,3 (52)
R(p·,·,1) = p̂·,·,0 (53)
R(p·,·,2) = p̂·,·,1 (54)
R(p·,·,3) = p̂·,·,2 (55)

This equivariance relation is of the same form (staggered vector field mapped onto collocated regular representation) as the
one investigated empirically in Fig. (2).

To prove the output layers defined by Eq. 50-51 are equivariant, we first consider a wider class of linear output layers,
identifying constraints on their linear weights equivalent to equivariance, then choose our output layer among these. The
wider class of output layers we consider (not all of which are equivariant), are defined by setting the outputs ui+0.5,j , vi,j+0.5

defined at grid cell interfaces to be equal to linear combinations to the regular representation values at the grid cell centers
on either side of the interfaces. Thus, we have:

ui+0.5,j =

3∑
k=0

ckpi+1,j,k −
3∑

k=0

dkpi,j,k (56)

vi,j+0.5 =

3∑
k=0

ekpi,j+1,k −
3∑

k=0

fkpi,j,k (57)

where ck, dk, ek, and fk are freely chosen coefficients.

Rotate-transforming the inputs, we end up with a transformed regular representation p̂ that provides input to the final output
layer defined in Eq. 56-57, which produces final outputs û, v̂. We have equivariance if and only if:

(û, v̂) = (T vector
R )b[(u, v)] (58)

where 0 ≤ b < 4 and T vector
R is defined as in Eq. 5. By the definition of the rotation operator’s action on regular

representations and vector fields, we therefore arrive at the following constraints:

c1 = d2 = e3 = f4 (59)
c2 = d3 = e4 = f1 (60)
c3 = d4 = e1 = f2 (61)
c4 = d1 = e2 = f3 (62)

This the set of local linear readout layers (Eq. 56-57) that are p4 equivariant is 4-dimensional, and we could pick any of
them or learn 4 coefficients. In this work, we opt for a simplicity, setting c1 = 1 and c2 = c3 = c4 = 0. Consequently, the
equivariant vector output from the p4 regular representation can be expressed as:

ui+0.5,j = pi+1,j,1 − pi,j,3 (63)
vi,j+0.5 = pi,j+1,2 − pi,j,4 (64)

It is important to note that this is merely one particular form of output layer for vector fields on the C-grid staggering. Other
forms of the output layer are attainable by selecting different values for ci, di, ei, and fi, which can also be learned.

D.1.2. VECTOR OUTPUT LAYER WITH P4M REGULAR REPRESENTATION INPUTS

The proof for this case proceeds similarly to the p4 case. We begin by again considering a class of linear output layers
mapping from the collocated regular representation to the staggered velocity fields. But whereas in Eq. 56-57 c, d, e, f each
have four coefficients, for p4m they have eight each according to the group dimension of the regular representation:

ui+0.5,j =

7∑
k=0

ckpi+1,j,k −
7∑

k=0

dkpi,j,k (65)

vi,j+0.5 =

7∑
k=0

ekpi,j+1,k −
7∑

k=0

fkpi,j,k (66)
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Here we have equivariance if and only if:

(û, v̂) = (T vector
R )b ◦ (T vector

F )a[(u, v)] (67)

where 0 ≤ a < 2, 0 ≤ b < 4 and T vector
F is the flipping operator for vector fields. Equating elements of the transformed

outputs as required for each of the 8 possible transformations, we arrive at the constraints:

c1 = d2 = e3 = f4 = c5 = d6 = e7 = f0 (68)
c2 = d3 = e4 = f1 = c6 = d7 = e0 = f5 (69)
c3 = d4 = e1 = f2 = c7 = d0 = e5 = f6 (70)
c4 = d1 = e2 = f3 = c0 = d5 = e6 = f7 (71)

As before, any choice of c will satisfy equivariance. We again take the simple case of c1 = 1 and c2 = c3 = c4 = 0. Thus,
the vector output layers on C-grids for u and v from the p4m regular representation are written as follows:

ui+0.5,j = pi+1,j,1 − pi,j,3 + pi+1,j,5 − pi,j,7 (72)
vi,j+0.5 = pi,j+1,2 − pi,j,4 + pi,j+1,6 − pi,j,0. (73)

Note that this is only one possible form for the output layer.

E. Group equivariance of PDE surrogate architectures
As illustrated in Fig. 13, the group equivariance of a neural network requires equivariance for the input layer, internal layers
and the output layer. Fig. 13a shows a network incorporating specialized input/output layers for velocity fields on a staggered
C-grid. Here the network exhibits a precise equivariance relationship that holds up to numerical precision. Fig. 13b show
the same network, but with a standard equivariant layer designed to operate on vector fields without staggering. Here the
equivariance relation no longer holds.
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Figure 13. Equivariance of neural PDE surrogates with (a) and without (b) specialized input layers for velocity fields on staggered C-grids.
Both networks used the same modern u-net architecture, but for (b) a standard equivariant vector field input from escnn was used, which
assumes a collocated grid. Both networks were tested for equivariance in a randomly initialized state, without any training. The same
input fields were used as input both before (upper rows) and after transforming the vector fields using a 90 degree rotation (bottom rows).
Both networks use an output layer designed for velocity fields on staggered C-grid. For the network in (a), rotation-transformation of the
output fields produced by original input fields matched the output fields arising from rotation-transformed inputs up to machine precision.
For the network in (b), the equivariance relation did not hold.
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F. Imposing physical constraints on neural PDE surrogates
In the shallow water system, mass is a conserved variable. To ensure the preservation of this variable during training and
inference, the mean of the update to the mass field is subtracted before the update is applied:

ζt+1 = ζt + dζ − mean(dζ) (74)

To conserve momentum without conserving mass in the INS system, perform a similar global mean correction.

ut+1 = ut + du− mean(du); vt+1 = vt + dv − mean(dv) (75)

To also impose mass conservation (equivalent to the divergence-free property of the velocity field), We learning a scalar
potential a and define the velocity field as the curl of this scalar field: [ût+1, v̂t+1] = ∇× [0, 0, a] as in Wandel et al., 2021.

ut+1 = ut − ∂a

∂y
; vt+1 = vt +

∂a

∂x
. (76)

These physical constraint layers are added after the equivariant output layers as needed. An example implementation for
INS is shown in the blue box in Fig. (1).

As an alternative approach, we might have also learned fluxes at the C-grid interfaces for conserved quantities at the cell
centers, or fluxes at the vertices for conserved quantities at the interfaces. This approach would be analogous to a finite
volume solver. A key advantage of this approach is that it is computed locally (McGreivy & Hakim, 2023), which avoids
unphysical action at large distances and facilitates easier generalization of the domain size after training. We leave this
avenue of exploration for future work, with the expectation that further improvements in accuracy could be achieved.

G. Simulation parameters
In this section, we list simulation parameters used to solve the shallow water equations and the incompressible Navier-Stokes
equations in the numerical solvers. We also show additional settings used to generate training data. Table 6 shows the
parameters for solving SWEs. Table 7 shows the parameters used to solve the INS and to generate the training data.

Table 6. Simulation parameters for SWEs
Parameters Explanation Value
L× L simulation domain 1000× 1000 (Km)

d undisturbed water depth 100 (m)
CD bottom drag coefficient 1.0e− 3
g acceleration due to gravity 9.81 (m/s2)
∆x space step 10 (Km)
∆t time step 300 (s)
wimp implicit weighting 0.5

Table 7. Simulation- and data generation parameters for INS
Parameters Explanation Value
L× L simulation domain 2π × 2π

ρ density 1
µ viscosity 1e− 3
T simulation time 224.34 s

∆tsolver the time step of numerical solver 0.00436 s
M ×M the grids of numerical solver 576× 576
∆xsolver the space step of numerical solver 0.0109
∆tml the time step of ML model 0.8375
m×m the grids of ML model 48× 48
∆xml the space step of ML solver 0.1308
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H. Architectural details of (group equivariant) modern U-Net
We modified the Modern U-Net (Gupta & Brandstetter, 2023) to create a symmetry- and physics-constrained version.
Table 8 describes network hyperparameters, and how these were adjusted depending on the chosen symmetry group in order
to match total parameter counts.

Table 8. Detailed architectural settings for (group equivariant) modern U-Net. In this table, we compare the hyperparameters of a modern
U-Net with those of p4- and p4m-equivariant versions.

Hyperparameter Modern U-net Modern U-net p4 Modern U-net p4m
Number of time steps in the input (time history (int)) 1 1 1
Number of time steps in the output (time future (int)) 1 1 1
Base hidden layer channel count (before multiplier) 4 2 2

Activation function Gelu Gelu Gelu
Normalization True True True

List of channel multipliers for each resolution (1,2,4) (1,3,3) (1,4,1)
Self-attention used at bottleneck False False False

Number of residual blocks at each resolution 1 1 1
Kernel size (3, 3) (3, 3) (3, 3)

Padding (1, 1) (1, 1) (1, 1)
Padding mode Circular Circular Circular

Convolution type for internal layers Conv2d rot2dOnR2(N=4) flipRot2dOnR2(N=4)

I. A hybrid method for the inference of shallow water system
Figure 14 shows a hybrid method used to predict the solution of a shallow water system. In our neural PDE surrogate, we
have only one output ζ and we have three inputs u, v and ζ . An additional physics-based solution step is required to compute
ut and vt from the ζt produced by the surrogate. These additional calculations are performed only for autoregressive rollouts
with trained networks, not during training. Following Backhaus, 1983, we first calculate an interim solution u∗, v∗ using an
explicit time step:

u∗ = un −∆tcD
1

h
un|un| −∆tg(1− wimp)

∂ζn

∂x
+∆tah∇2un (77)

v∗ = vn −∆tcD
1

h
vn|vn| −∆tg(1− wimp)

∂ζn

∂y
+∆tah∇2vn (78)

here the superscript n indicates the time step. Next, the interim velocities are combined with the surrogate’s estimate of ζ to
produce a semi-implicit solution for the velocities:

un+1 = u∗ −∆tgwimp
∂ζn+1

∂x
(79)

vn+1 = v∗ −∆tgwimp
∂ζn+1

∂y
(80)

 Numerical

    solver

   Neural

integrator
   Initial 

condition

Figure 14. The figure describes the configuration of the hybrid method for the inference of shallow water systems from a trained model.
The fluid surface elevation ζt is predicted by the neural network. The calculation of ut and vt is achieved through the application of the
following Equations (79-80) with the known value of ζt.
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J. Additional results
J.1. SWE rollouts

Fig. 15 shows predicted surface heights ζ for the shallow water system with additional time steps and models. The primary
text presents two models, p1/∅ and p4m/M, which are evaluated against the reference at six time steps, as illustrated
in Figure 3-a. Figure 15 extends this by presenting the reference, p1/∅, p1/M, p1/∅ + ϵ, p4/∅, p4/M, p4m/∅, p4m/M,
p4m/M+ϵ, FNO/∅, and drnet/∅ with the reference at nine time steps.

These rollouts illustrate only one of thirty distinct initial conditions. In this particular instance, the p4m/M model is the
most stable and accurate model in comparison to all other methods. As previously mentioned, the main text also displayed
statistical scores calculated over twenty distinct initial conditions, for example in Figure 15c-g.
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Figure 15. Rollout predictions for the fluid surface elevation ζ for all surrogates on the closed boundary shallow water system at various
forecast horizons. The predictions of ten trained models are compared to the reference. The results obtained from this analysis clearly
demonstrate that the p4m/M method exhibits superior performance in terms of stability and accuracy when compared to all other methods.
This figure is an expanded version of Fig. 3a in the main text.
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J.2. Training with input noise for SWE

We compare our unconstrained and physics/symmetry-constrained SWE surrogates, with their noisy variants p1/∅, p1/∅+ ϵ
(Fig. 16). We added Gaussian noise drawn from N (µ = 0, σ = 0.0001) during the training process. Training with input
noise yielded moderately low error for long very rollouts, but yielded lower accuracy compared to the noise-free model for
shorter rollouts, especially when constraints were used. Predictions from the noisy model demonstrate reduced accuracy,
even at the early stages of the rollout.

reference

p1/�
p1/�+
p4m/M

p4m/M+

a
b

Figure 16. Comparison of reference simulations and neural surrogates trained with input noise, denoted p1/∅+ ε and p4m/M+ε, as well
as their their noise-free counterparts p1/∅ and p4m/M, based on the metrics NRMSE-ζ and ρ(ζ̂, ζ). The NRMSE-ζ metric reveals that
p4m/M+ϵ exhibits a comparatively diminished error over an extended time span in comparison to alternative methodologies. p4m/M
delivers a more precise prediction for the first 25 hours.

J.3. Time evolution of conserved quantities for SWE

Fig. 17 shows the mass, momentum, and total energy for the closed boundary shallow water system for various surrogates
and the reference solution over the course of 50 simulated hours 17. The mass and total energy remain constant, while
momentum oscillates slightly (black curves). The p4m/M model gives the closets match to the reference solution.

ref.

p4m/�
p1/�
p1/M
p1/�+

p4/�
p4/M
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FNO/� drnet/�
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Figure 17. Mass, momentum and total energy for the shallow water equations for all surrogates tested over the course of 50 simulated
hours. The p4m/M model, which has been identified as the most effective model, exhibits superior performance in reproducing the mass,
momentum and total energy of the solver.

J.4. Decaying turbulence rollouts

Fig. (18-19), show rollout of velocities u and v for additional time points and surrogates, extending Fig. 4 from the main
text. We compared the predictions of velocity u and v from thirteen surrogates with the reference solution: p1/∅, p1/ρu⃗,
p1/M+ρu⃗, p1/∅+ ϵ, p4/∅, p4/ρu⃗, p4/M+ρu⃗, p4m/∅, p4m/ρu⃗, p4m/M+ρu⃗, p4m/M+ρu⃗+ ϵ, FNO/∅ and drnet/∅. These
results show just one of 30 initial conditions.
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Figure 18. Rollout predictions for u from thirteen models with approximately 0.1M parameters each for decaying turbulence at varying
time steps. The top row shows the reference simulation. This plot extends Fig. 4 from the main text.
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Figure 19. Rollout predictions for v from thirteen models with approximately 0.1M parameters each for decaying turbulence at varying
time steps. The top row shows the reference simulation.
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J.5. Momentum in surrogate rollouts for decaying turbulence

Figure. 20 shows reference and predicted momentum for various surrogates. The non-physically-constrained models (p1/∅,
p4/∅, and p4m/∅) exhibit a substantial increase in momentum compared to the reference.

h

e

a b c

d f

g i
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p4/M+

reference
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p4/�
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Figure 20. Momentum over time for all surrogates on the decaying incompressible turbulence task, compared to momentum of reference
solution (black).

J.6. Velocity and Energy Spectra for Decaying Turbulence

Figure (21) shows the velocity and energy spectra (u(k)k5 and E(k)k5) at additional time steps, expanding on the two time
steps previously shown in Figure 4-d,e of the main text. Our analysis demonstrates that the model p4m/M+ρu⃗ (blue curve)
consistently provides the closest match to the reference across all time steps for both the velocity and energy spectra.
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Figure 21. Velocity and energy spectra at additional time points. Results are consistent with the those presented in the main text,
specifically Figures (4-d,e). p4m/M+ρu⃗ (blue curves) most closely matches the reference spectra (black).

J.7. Training with input noise for decaying turbulence

We investigated the effect of input noise during the training process for the decaying turbulence task (Fig. 22). We trained
with input noise drawn from N (µ = 0, σ = 0.001). Training with input noise did not produce a clear increase in accuracy
for unconstrained surrogates.

p4m/M+

reference

p1/�
p1/�+

p4m/M+    +

a b

Figure 22. Comparison of surrogates trained with noise vs. clean data: p1/∅+ ε, p4m/M+ρu⃗+ ε, p1/∅ and p4m/M+ρu⃗. We find that
training with noise did not bring about clear improvements to accuracy, though unconstrained models were slightly more accurate for long
rollouts.

J.8. Dilated ResNet as surrogate for decaying turbulence

In the main text, we used the robust Modern U-net architecture for the study of INS. In this section, an alternative architecture,
DilatedRes Net Stachenfeld et al., 2021; Kohl et al., 2024, is modified to incorporate equivariance with respect to p4 and
p4m. The input layer, output layer, and physical constraints of these models are consistent with those outlined in the main
text. In this section, we focus on investigating nine Dilated ResNet models: p1/∅, p1/ρu⃗, p1/M+ρu⃗, p4/∅, p4/ρu⃗, p4/M+ρu⃗,
p4m/∅, p4m/ρu⃗, p4m/M+ρu⃗.

Fig. (23-24) present a single instance ofvelocities u and v predicted by nine Dilated ResNet models, as well as the reference
simulation. The network size of these models is approximately 0.1M, which is comparable to the modern U-Net in Figure 4-a.
The p4m/M+ρu⃗ with Dilated ResNet exhibits the best rollouts for both u and v when compared to the reference, as illustrated
in Figures (23-24).
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Figure 23. Rollouts of u by nine Dilated ResNet surrogates for decaying turbulence. The network size these surrogates was approximately
0.1M parameters. In this particular instance, the p4m/M+ρu⃗ model is the most similar to the reference solution.

35



Geometric and Physical Constraints Synergistically Enhance Neural PDE Surrogates
p
1
/�

p
1
/

p
1
/M

+
p
4
/�

p
4
m
/�

p
4
/M

+
p
4
/

p
4
m
/M

+
p
4
m
/

r
e
fe
r
e
n
c
e

0.8s 10.1s 19.3s 28.5s 37.7s 46.9s 56.1s 65.3s 74.5s 83.8s 93.0s 99.7s

Figure 24. Rollouts of u by nine Dilated ResNet surrogates for decaying turbulence, same data as Fig. 23.

Over 30 random initial conditions, we computed accuracy metrics for these drnet surrogates (Fig. 25). The worst dilated
ResNet model was p1/∅, and the best was p4m/M+ρu⃗.
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Figure 25. NRMSE-u and ρ(û, u) for the Dilated ResNet surrogates on the decaying turbulence task. Results are derived from 30 random
initial conditions.

We also computed velocity and energy spectra (u(k)k5 and E(k)k5) for the Dilated ResNet models of decaying turbulence.
Doubly constrained surrogates reproduced these spectra most faithfully (Fig. 26.
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Figure 26. Velocity and energy spectra (u(k)k5 and E(k)k5) for the Dilated ResNet models of decaying turbulence.

J.9. Pushforward Training

Here we analyze surrogates trained with the pushforward trick (Brandstetter et al., 2022c) in greater detail. We consider the
modern U-Net base architecture and its constrained variants on the decaying turbulence task. Pushforward training employs
an auto-regressive rollout, using model outputs as inputs for the next time step time step, but does not propagate gradients
backwards in time. Following Brandstetter et al., 2022c, we roll out for two time steps.

With PF training, the maximally constrained model p4m/M+ρu⃗+PF exhibited significantly reduced NRMSE compared to
less constrained models, while the improvement was less clear for correlation.
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Figure 27. NRMSE-u and ρ(û, u) for pushforward training of PDE surrogates.

J.10. Data augmentation

Data augmentation is a regularization technique that uses transformed copies of data points to train a neural network, to
reduce overfitting and improve generalization. It has been employed to train PDE surrogates (Brandstetter et al., 2022b;
Fanaskov et al., 2023). We augment with random rotations, as well as flipping with probability 0.5. The transformation is
applied to both inputs and outputs for each training data point, with transformations applied to vector fields as previously
described.

As expected, data augmentation had no effect on fully equivariant surrogates, but did bring about some improvement in non
equivariant models (Fig. 28).
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Figure 28. Performance of data-augmented models.

J.11. Generalization tasks

We tested surrogates on additional ICs that were not present in their training datasets, for the SWE and INS cases.

J.11.1. GENERALIZATION FOR SWES

We evaluated generalization capability for SWE surrogates in 3 experiments with 20 ICs each. First, we used a single
rectangle with a size of 0.1 m as the IC, with its location chosen at random (Fig. 29). Second, we used the sum of two
rectangles, each measuring 0.1 m, with their locations selected at random (Fig. 30). Finally, we used two overlapping
rectangular elevations (summed over the region of overlap, Fig.31), which proved the most challenging configuration. The
p4m/M surrogate proved superior in each case.
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Figure 29. Rollouts demonstrating generalization for the SWEs, generated by all surrogates from a single rectangular-shaped elevation IC,
are shown at various time intervals.
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Figure 30. Rollouts demonstrating generalization for the SWEs, generated by all surrogates from a single IC consisting of two rectangular
elevations, are shown at various time intervals.
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Figure 31. Rollouts demonstrating generalization for the SWEs, generated by all surrogates from a single IC consisting of two overlapping
(summed) rectangular elevations, are shown at various time intervals.

J.11.2. GENERALIZATION FOR DECAYING TURBULENCE

We evaluated generalization capability for INS surrogates, using 10 ICs with peak wavenumber 8. Figs. 32-33 show
examples of the reference solution and surrogate rollouts for this data.
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Figure 32. Rollout performance of networks with various physical and symmetry constraints for the generalization test of decaying
turbulence. The figures depict the evolution of the field variable u.
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Figure 33. Rollout performance of networks with various physical and symmetry constraints for the generalization test of decaying
turbulence. The figures depict the evolution of the field variable v.

Fig. 34 shows velocity and energy spectra for the reference solution and surrogates in the generalization test for INS. These
spectra are expanded versions of those in Fig. 5e-f in the main text.p4m/M+ρu⃗ (blue curves) exhibits the most precise
alignment with the reference spectra (black) for both velocity and energy.
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Figure 34. Velocity (u) and energy power spectra over an extended range of rollouts for the generalization of decaying turbulence case.
This analysis extends the findings presented in Figure 5-(e,f) of the primary text. p4m/M+ρu⃗ exhibits the best match to the energy and
velocity spectra of reference solutions.

J.12. Effects of network and dataset size on rollout performance

Fig. 35 show the effect of network and training dataset size on rollout performance, using INS surrogates based on modern
U-net with 0.1M, 2M and 8.5M parameters. We consider training dataset sizes of 100, 400 and 760 unique ICs. The
findings indicate that increasing the network size or the training dataset size enhances the rollout performance of the network.
Additionally, networks with physical and symmetry constraints exhibits superior performance in each case.
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Figure 35. Top: effect of network size on NRMSE-u, ρ(û, u) (a, b) and the energy spectrum (c-g) for PDE surrogates. Bottom: effect of
training data size on NRMSE-u, ρ(û, u) (h, i), and the energy spectrum (g,s). All results are reported for 99.7s rollouts.

J.13. Inference time per time step of p1/∅ and p4m/M+ρu⃗ at various network sizes

Table J.13 reports inference time per time step of p1/∅ and p4m/M+ρu⃗ with various network sizes on CPU (Intel Xeon
Platinum 8160) and GPU (Nvidia A100 40 GB) nodes. Inference speed was computed from an autoregressive rollout over
120 time steps. On the CPU, p4m/M+ρu⃗ is consistently slower than the speed of p1/∅ for all network sizes, but on the GPU
both networks are dominated by overhead costs that do not scale with network size up to 8.5 M parameters. Inference on the
CPU is slower than on the GPU for both p1/∅ and p4m/M+ρu⃗. These results indicate that the advantages conferred by
physical and symmetry constraints do not adversely impact GPU-based predictions, at least for the domain and network sizes
tested. The relative independence of GPU inference speed on network size suggests that overhead costs, kernel launches and
memory transfers are likely bottlenecks, and further network scaling and optimization would be required to identify the true
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costs of constrained vs. unconstrained inference in the limit of large network sizes.

Table 9. Inference time per time step of p1/∅ and p4m/M+ρu⃗ on CPU (Intel Xeon Platinum 8160) and GPU (nVidia A100 40 GB) nodes
for various network sizes. Inference speed was computed for an autoregressive rollout over 120 time Steps.

p1/∅ p4m/M+ρu⃗

Networks size CPU GPU CPU GPU

0.1 M 9.4±0.9ms 6.2±0.7ms 20.6±3.2ms 8.2 ±0.4ms
2.0 M 26.4±4.1ms 6.3±0.3ms 71.2±59.5ms 12.0±3.3ms
8.5 M 27.5±3.8ms 6.4±0.2ms 145.7±98.7ms 8.4±0.1ms

J.14. Real Ocean Dynamics

We used the ocean current velocity data was sourced from the Global Ocean Physics Analysis and Forecast (Marullo et al.,
2014), and followed (Wang et al., 2021) for data selection and processing. The 6-hourly data from 2022-06-01 to 2025-04-05
was selected for analysis from three different ocean regions. The corresponding latitude and longitude ranges for these
regions are listed below: (30 -42, 168 -180), (-49 -37, 80 -92), and (-51 -39, -30 -18). The data set under consideration has
144 × 144 pixel velocity fields. In order to reduce the size of the training set, it was downscaled to a coarse grid of 48× 48
for training, testing and validation purposes.

Once surrogate training was completed, forecasts were made from a different region and time period. The latitude and
longitude ranges for prediction were (-44 -32, -130 -118), and the time range was 2023-06-01 to 2025-04-05.
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