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Introduction & Motivation Decaying Turbulence
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= Challenges for ML-based PDE prediction: long-term rollout accuracy, stability, generalization. G & 5210
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* Previous ML Models: can be improved by both physical and geometric constraints. G & 107 S Bk
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= Staggered C-grids: often used in weather, climate and fluid dynamics, but unsupported by ; S > | e P/ pUL o D oM pisPF
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= p4m/M+pu (symmetry+phy3|cs Constralnts) outperforms other networks with similar parameter counts on INS.

Symmetry- and Physics—Constrained Neural Surrogates
= Accuracy of energy spectrum and momentum with standard error of the mean over 30 ICs.

Network Architecture

Inputdata = Inputlayer —> Hidden layers = Outputlayer —> Output data Generalization Beyond Training Data & Real Ocean Currents
staggered C-grid equlvarlan’ﬁlters regular representation . equivarlance staggered C-grid 0 ok
Wuﬂ 1Y collocated grid physical constraints SWEs ¢ = ref.
= 1/
R WV .« Modern U-Net Physical constraints Sl 51/M
o BE_R%W escnn vs R D =p1/0+€
—Rygo W™ m E — R0 W™ xTZg Y2 i S - B:;I\le
y : V. [ut, o] =10 2| & - p4m/J
R R ol S . t(h) 50 VA (k) B0 L=pamm
Symmetry constraints: [uf, vt]—[att, 5t T,[ut,vt]=Ty[attt, ottl] ge (@, M) S . (®* SWEs rollouts from p4m/M for L-shaped initial disturbances.
The input- and output data are on C-grids. Starting from a strong modern U-net base architecture (Gupta et al., - I® Accuracy ot each network is computed over 6 ICs.
2023), we imposed physical and symmetry constraints, individually and in combination. NS 1265 385s  50.55 829 e . p——
. -~ = 10 p1l®
Experiments Incompressible Navier-Stokes (INS) & Decaying Turbulence 52, - 08 e
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» Energy- and velocity spectrum at t=99.7s, averaged over 10 ICs.

Double-Constrained Models Outperform Other Networks on SWEs & INS
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* p4m/M (symmetry+physics constraints) outperforms other networks. = Symmetries are more effective than physical constraints, but combining both is best.

= Normalized RMSE and correlation are shown for 50h rollouts, with standard error of the mean over 20 ICs. = Our model improves generalisation to new ICs, and accurately predicts real ocean currents.



